GNN at the Edge: Cost-Efficient Graph Neural Network Processing Over Distributed Edge Servers

计算机科学 服务器 GSM演进的增强数据速率 计算机网络 图形 人工神经网络 分布式计算 理论计算机科学 人工智能
作者
Liekang Zeng,Chongyu Yang,Peng Huang,Zhi Zhou,Shuai Yu,Xu Chen
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (3): 720-739 被引量:17
标识
DOI:10.1109/jsac.2022.3229422
摘要

Edge intelligence has arisen as a promising computing paradigm for supporting miscellaneous smart applications that rely on machine learning techniques. While the community has extensively investigated multi-tier edge deployment for traditional deep learning models (e.g. CNNs, RNNs), the emerging Graph Neural Networks (GNNs) are still under exploration, presenting a stark disparity to its broad edge adoptions such as traffic flow forecasting and location-based social recommendation. To bridge this gap, this paper formally studies the cost optimization for distributed GNN processing over a multi-tier heterogeneous edge network. We build a comprehensive modeling framework that can capture a variety of different cost factors, based on which we formulate a cost-efficient graph layout optimization problem that is proved to be NP-hard. Instead of trivially applying traditional data placement wisdom, we theoretically reveal the structural property of quadratic submodularity implicated in GNN's unique computing pattern, which motivates our design of an efficient iterative solution exploiting graph cuts. Rigorous analysis shows that it provides parameterized constant approximation ratio, guaranteed convergence, and exact feasibility. To tackle potential graph topological evolution in GNN processing, we further devise an incremental update strategy and an adaptive scheduling algorithm for lightweight dynamic layout optimization. Evaluations with real-world datasets and various GNN benchmarks demonstrate that our approach achieves superior performance over de facto baselines with more than 95.8% cost reduction in a fast convergence speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
6秒前
一个人战争完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
孙成成发布了新的文献求助10
10秒前
廖英健完成签到 ,获得积分10
11秒前
zmx123123完成签到,获得积分10
11秒前
ZZ发布了新的文献求助10
12秒前
12秒前
13秒前
yyao发布了新的文献求助30
13秒前
白潇潇发布了新的文献求助10
13秒前
Owen应助谨言采纳,获得10
14秒前
BDMAXPK发布了新的文献求助10
14秒前
15秒前
15秒前
大轩发布了新的文献求助10
15秒前
榜一大哥的负担完成签到 ,获得积分10
18秒前
科研通AI2S应助糖豆采纳,获得10
22秒前
22秒前
熱風完成签到 ,获得积分10
25秒前
柯一一应助Liucky采纳,获得10
25秒前
26秒前
科目三应助高跟鞋陈煋采纳,获得10
26秒前
彩色夜阑完成签到,获得积分10
26秒前
搜集达人应助果子采纳,获得10
26秒前
南天发布了新的文献求助30
27秒前
爆米花应助Mingtiaoxiyue采纳,获得30
27秒前
涛声依旧完成签到,获得积分10
29秒前
S.S.N完成签到 ,获得积分10
31秒前
31秒前
38秒前
39秒前
情怀应助Cici采纳,获得10
41秒前
星辰大海应助WD采纳,获得10
42秒前
果子发布了新的文献求助10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975610
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200337
捐赠科研通 3256337
什么是DOI,文献DOI怎么找? 1798246
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806357