GNN at the Edge: Cost-Efficient Graph Neural Network Processing Over Distributed Edge Servers

计算机科学 服务器 GSM演进的增强数据速率 计算机网络 图形 人工神经网络 分布式计算 理论计算机科学 人工智能
作者
Liekang Zeng,Chongyu Yang,Peng Huang,Zhi Zhou,Shuai Yu,Xu Chen
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (3): 720-739 被引量:17
标识
DOI:10.1109/jsac.2022.3229422
摘要

Edge intelligence has arisen as a promising computing paradigm for supporting miscellaneous smart applications that rely on machine learning techniques. While the community has extensively investigated multi-tier edge deployment for traditional deep learning models (e.g. CNNs, RNNs), the emerging Graph Neural Networks (GNNs) are still under exploration, presenting a stark disparity to its broad edge adoptions such as traffic flow forecasting and location-based social recommendation. To bridge this gap, this paper formally studies the cost optimization for distributed GNN processing over a multi-tier heterogeneous edge network. We build a comprehensive modeling framework that can capture a variety of different cost factors, based on which we formulate a cost-efficient graph layout optimization problem that is proved to be NP-hard. Instead of trivially applying traditional data placement wisdom, we theoretically reveal the structural property of quadratic submodularity implicated in GNN's unique computing pattern, which motivates our design of an efficient iterative solution exploiting graph cuts. Rigorous analysis shows that it provides parameterized constant approximation ratio, guaranteed convergence, and exact feasibility. To tackle potential graph topological evolution in GNN processing, we further devise an incremental update strategy and an adaptive scheduling algorithm for lightweight dynamic layout optimization. Evaluations with real-world datasets and various GNN benchmarks demonstrate that our approach achieves superior performance over de facto baselines with more than 95.8% cost reduction in a fast convergence speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Callmeteji发布了新的文献求助10
刚刚
我在发布了新的文献求助10
刚刚
思源应助shi hui采纳,获得10
1秒前
Yong发布了新的文献求助10
3秒前
阿橘发布了新的文献求助10
3秒前
lshl2000发布了新的文献求助10
3秒前
3秒前
4秒前
xxxx完成签到,获得积分10
5秒前
5秒前
6秒前
daomaihu完成签到 ,获得积分10
6秒前
负责乐曲完成签到,获得积分10
6秒前
7秒前
yousheng完成签到,获得积分10
8秒前
Oscillator发布了新的文献求助10
9秒前
Criminology34应助YanJinyu采纳,获得10
10秒前
10秒前
10秒前
叶知秋发布了新的文献求助10
10秒前
搜集达人应助陈的住气采纳,获得10
11秒前
共享精神应助陈的住气采纳,获得10
11秒前
科目三应助陈的住气采纳,获得10
11秒前
可爱的函函应助陈的住气采纳,获得10
11秒前
脑洞疼应助陈的住气采纳,获得10
11秒前
无花果应助陈的住气采纳,获得10
11秒前
NexusExplorer应助陈的住气采纳,获得10
11秒前
传奇3应助陈的住气采纳,获得10
11秒前
研友_VZG7GZ应助陈的住气采纳,获得10
11秒前
bkagyin应助陈的住气采纳,获得30
12秒前
Callmeteji完成签到,获得积分10
14秒前
14秒前
个性以蓝完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
leiwenyulan完成签到,获得积分10
15秒前
caoyy发布了新的文献求助10
15秒前
小马甲应助Jane采纳,获得10
15秒前
量子星尘发布了新的文献求助10
17秒前
个性以蓝发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879