GNN at the Edge: Cost-Efficient Graph Neural Network Processing Over Distributed Edge Servers

计算机科学 服务器 GSM演进的增强数据速率 计算机网络 图形 人工神经网络 分布式计算 理论计算机科学 人工智能
作者
Liekang Zeng,Chongyu Yang,Peng Huang,Zhi Zhou,Shuai Yu,Xu Chen
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (3): 720-739 被引量:17
标识
DOI:10.1109/jsac.2022.3229422
摘要

Edge intelligence has arisen as a promising computing paradigm for supporting miscellaneous smart applications that rely on machine learning techniques. While the community has extensively investigated multi-tier edge deployment for traditional deep learning models (e.g. CNNs, RNNs), the emerging Graph Neural Networks (GNNs) are still under exploration, presenting a stark disparity to its broad edge adoptions such as traffic flow forecasting and location-based social recommendation. To bridge this gap, this paper formally studies the cost optimization for distributed GNN processing over a multi-tier heterogeneous edge network. We build a comprehensive modeling framework that can capture a variety of different cost factors, based on which we formulate a cost-efficient graph layout optimization problem that is proved to be NP-hard. Instead of trivially applying traditional data placement wisdom, we theoretically reveal the structural property of quadratic submodularity implicated in GNN's unique computing pattern, which motivates our design of an efficient iterative solution exploiting graph cuts. Rigorous analysis shows that it provides parameterized constant approximation ratio, guaranteed convergence, and exact feasibility. To tackle potential graph topological evolution in GNN processing, we further devise an incremental update strategy and an adaptive scheduling algorithm for lightweight dynamic layout optimization. Evaluations with real-world datasets and various GNN benchmarks demonstrate that our approach achieves superior performance over de facto baselines with more than 95.8% cost reduction in a fast convergence speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sh131完成签到,获得积分10
刚刚
2秒前
烂漫的金针菇完成签到,获得积分10
2秒前
李健应助优雅的山柳采纳,获得10
2秒前
无极微光给LIANG的求助进行了留言
3秒前
4秒前
胡沈焕然完成签到,获得积分20
4秒前
乐观鑫鹏发布了新的文献求助10
4秒前
catherine发布了新的文献求助20
4秒前
5秒前
费老五完成签到 ,获得积分10
5秒前
所所应助黎金鑫采纳,获得10
5秒前
6秒前
黄柠檬完成签到,获得积分10
6秒前
柴柴柴完成签到,获得积分20
7秒前
CipherSage应助困困酱采纳,获得10
7秒前
香蕉觅云应助MT采纳,获得10
7秒前
7秒前
Jasper应助亚铁氰化钾采纳,获得10
7秒前
CodeCraft应助Annie采纳,获得30
8秒前
斯文败类应助能干雁凡采纳,获得10
9秒前
9秒前
无极微光应助开朗颜演采纳,获得20
9秒前
微笑向卉发布了新的文献求助10
10秒前
10秒前
SciGPT应助徐爱琳采纳,获得10
10秒前
11秒前
刘威发布了新的文献求助10
11秒前
搞怪的若灵完成签到,获得积分10
11秒前
王了了发布了新的文献求助10
12秒前
12秒前
活力菠萝发布了新的文献求助10
12秒前
zzrg发布了新的文献求助10
13秒前
13秒前
yufeizhle完成签到 ,获得积分10
13秒前
14秒前
14秒前
丘比特应助bbbbhr采纳,获得10
14秒前
所所应助孤巷的猫采纳,获得10
14秒前
Mississippiecho完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578243
求助须知:如何正确求助?哪些是违规求助? 4663137
关于积分的说明 14744830
捐赠科研通 4603883
什么是DOI,文献DOI怎么找? 2526739
邀请新用户注册赠送积分活动 1496343
关于科研通互助平台的介绍 1465712