Adaptive H-infinity extended Kalman filtering for a navigation system in presence of high uncertainties

控制理论(社会学) 卡尔曼滤波器 稳健性(进化) 扩展卡尔曼滤波器 快速卡尔曼滤波 不变扩展卡尔曼滤波器 计算机科学 传感器融合 GPS/INS α-β滤光片 惯性导航系统 全球定位系统 控制论中的H∞方法 算法 数学 人工智能 移动视界估计 辅助全球定位系统 生物化学 电信 基因 方向(向量空间) 化学 几何学 控制(管理)
作者
Setareh Yazdkhasti,Danial Sabzevari,Jurek Z. Sąsiadek
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
卷期号:45 (8): 1430-1442 被引量:2
标识
DOI:10.1177/01423312221136022
摘要

The optimal performance of the Kalman filters is highly dependent on the measurement and process noise characteristics, making the whole system unable to achieve the desired estimation in the presence of non-Gaussian mean noise distribution and high initial uncertainties. Recently, the H-infinity filter, as a robust algorithm, has been broadly used, as it is not being dependent on the pre-knowledge of the noise nature; however, making a balance between high robustness and estimation accuracy is a challenging issue. Hence, to overcome this problem, a new adaptive H-infinity extended Kalman filter (AHEKF) was designed in this paper, which benefits from both high robustness and precision. The suggested algorithm contains two adaptive sections to achieve high accuracy as well as controlling the effects of time-varying noise characteristics, high initial uncertainties, and abnormal data that can degrade the accuracy of state estimation in an integrated navigation system. The presented algorithm was used to integrate data from two independent sensors data. The simulation results for an inertial navigation system (INS)/global positioning system (GPS) sensor fusion are presented and compared with the standard H-infinity filter, extended Kalman filter (EKF), and unscented Kalman filter (UKF) to show the effectiveness of the proposed algorithm. Evaluations demonstrate that the AHEKF achieves over 50% higher accuracy and robustness, and over 2.5 times faster convergence of estimation errors than the standard H-infinity filter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oliv发布了新的文献求助10
刚刚
李爱国应助Sam采纳,获得10
1秒前
CY完成签到,获得积分10
1秒前
zyy发布了新的文献求助10
1秒前
烟花应助智博36采纳,获得10
1秒前
Lucas应助如意的梦秋采纳,获得10
2秒前
Murmures发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
YC驳回了浦肯野应助
3秒前
3秒前
晗月完成签到,获得积分10
4秒前
4秒前
务实的筝发布了新的文献求助10
4秒前
劲秉应助林梦婷采纳,获得10
4秒前
4秒前
科目三应助dagongren采纳,获得10
5秒前
5秒前
6秒前
6秒前
大力沛萍发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
大个应助iNk采纳,获得10
7秒前
arabidopsis发布了新的文献求助30
7秒前
桐桐应助Murmures采纳,获得10
8秒前
8秒前
lcl完成签到,获得积分10
9秒前
yu完成签到,获得积分10
9秒前
小周发布了新的文献求助10
9秒前
zhifangpapa完成签到,获得积分20
9秒前
10秒前
英姑应助罗向南采纳,获得10
10秒前
10秒前
岁岁菌完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470540
求助须知:如何正确求助?哪些是违规求助? 3063510
关于积分的说明 9083726
捐赠科研通 2753934
什么是DOI,文献DOI怎么找? 1511152
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698178