启发式
推论
社会启发式
任务(项目管理)
灵活性(工程)
人工智能
计算机科学
社会学习
认知心理学
因果推理
认知
机器学习
社会认知
功能(生物学)
心理学
知识管理
社会能力
计量经济学
社会变革
数学
工程类
操作系统
统计
生物
经济
神经科学
进化生物学
系统工程
经济增长
作者
Robert D. Hawkins,Andrew M. Berdahl,Alex Pentland,Joshua B. Tenenbaum,Noah D. Goodman,P. M. Krafft
出处
期刊:Cornell University - arXiv
日期:2022-01-01
标识
DOI:10.48550/arxiv.2212.00869
摘要
Groups coordinate more effectively when individuals are able to learn from others' successes. But acquiring such knowledge is not always easy, especially in real-world environments where success is hidden from public view. We suggest that social inference capacities may help bridge this gap, allowing individuals to update their beliefs about others' underlying knowledge and success from observable trajectories of behavior. We compared our social inference model against simpler heuristics in three studies of human behavior in a collective sensing task. In Experiment 1, we found that average performance improves as a function of group size at a rate greater than predicted by non-inferential models. Experiment 2 introduced artificial agents to evaluate how individuals selectively rely on social information. Experiment 3 generalized these findings to a more complex reward landscape. Taken together, our findings provide insight into the relationship between individual social cognition and the flexibility of collective behavior.
科研通智能强力驱动
Strongly Powered by AbleSci AI