A charge dependent long-ranged force drives tailored assembly of matter in solution

化学物理 溶剂化 水溶液 凝聚 化学 分子动力学 纳米技术 偶极子 表面电荷 离子 材料科学 计算化学 物理化学 有机化学 生物化学
作者
Sida Wang,Rowan Walker-Gibbons,Bethany Watkins,Melissa Flynn,Madhavi Krishnan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2212.12894
摘要

The interaction between charged objects in solution is generally expected to recapitulate two central principles of electromagnetics: (i) like-charged objects repel, and (ii) they do so regardless of the sign of their electrical charge. Here we demonstrate experimentally that the solvent plays a hitherto unforeseen but crucial role in interparticle interactions, and importantly, that interactions in the fluid phase can break charge-reversal symmetry. We show that in aqueous solution, negatively charged particles can attract at long range while positively charged particles repel. In solvents that exhibit an inversion of the net molecular dipole at an interface, such as alcohols, we find that the converse can be true: positively charged particles may attract whereas negatives repel. The observations hold across a wide variety of surface chemistries: from inorganic silica and polymeric particles to polyelectrolyte- and polypeptide-coated surfaces in aqueous solution. A theory of interparticle interactions that invokes solvation at an interface explains the observations. Our study establishes a specific and unanticipated mechanism by which the molecular solvent may give rise to a strong and long-ranged force in solution, with immediate ramifications for a variety of particulate and molecular processes including tailored self-assembly, gelation and crystallization, as well as biomolecular condensation, coacervation and phase segregation. These findings also shed light on the solvent-induced interfacial electrical potential - an elusive quantity in electrochemistry and interface science implicated in many natural and technological processes, such as atmospheric chemical reactions, electrochemical energy storage and conversion, and the conduction of ions across cell membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emilia完成签到,获得积分10
刚刚
1秒前
烩面大师发布了新的文献求助10
1秒前
鲍binyu完成签到,获得积分10
2秒前
Hello应助猪猪hero采纳,获得10
2秒前
今后应助xiuxiu_27采纳,获得10
3秒前
3秒前
jjy发布了新的文献求助10
3秒前
3秒前
在人类完成签到,获得积分10
3秒前
哈雷彗星完成签到,获得积分10
3秒前
系统提示发布了新的文献求助10
3秒前
luca驳回了Orange应助
4秒前
孙二二完成签到,获得积分10
4秒前
迷人圣诞树很闲完成签到,获得积分10
4秒前
优秀的修洁完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
顺心的惜蕊完成签到,获得积分10
5秒前
5秒前
Lucas应助等待的乐儿采纳,获得10
6秒前
嘉梦完成签到,获得积分10
6秒前
激动的从霜完成签到,获得积分10
6秒前
大门神发布了新的文献求助10
6秒前
思源应助xiaokezhang采纳,获得10
7秒前
8秒前
swsx1317完成签到,获得积分10
8秒前
从容飞凤发布了新的文献求助10
8秒前
皮卡皮卡完成签到 ,获得积分10
9秒前
无花果应助qq小兵采纳,获得10
9秒前
9秒前
1111发布了新的文献求助10
10秒前
小马甲应助bwbw采纳,获得10
11秒前
Zhang发布了新的文献求助10
11秒前
会编程真是太好了完成签到 ,获得积分10
11秒前
哭泣的猕猴桃完成签到,获得积分10
12秒前
wwwwyyyy发布了新的文献求助10
12秒前
烧烤完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759