Machine Learning-based Smart Irrigation Monitoring System for Agriculture Applications Using Free and Low-Cost IoT Platform

MQTT公司 计算机科学 微控制器 传感器节点 阿杜伊诺 节点(物理) 实时计算 嵌入式系统 人工智能 数据库 物联网 操作系统 工程类 无线传感器网络中的密钥分配 无线 无线网络 结构工程
作者
Youness Hakam,Ahmed Gaga,Benachir El Haddadi
标识
DOI:10.1109/icm56065.2022.10005419
摘要

A solution for the Internet of Things (IoT) Smart Irrigation Monitoring System based on artificial intelligence is proposed in this work, which is based on the communication between the Raspberry Pi3 card and severalESP32 clients using the MQTT and HTTP protocols, respectively. Our solution is divided into three parts: the firstis consists of soil moisture measurements in various zones of the field in order to construct a smart irrigation system. However, in the second part, for the second part, we involve the choice of power supply of our system. in this paper we use photovoltaic panels as a power source. A voltage constant and current measured by the ACS712 sensor, we have measured the power and energy of the solar panels every 5 min. These measures will be shown on the Node-RED platform and stored as a database in the SQLite programming language SQLite is introduced to reduce the database complexity. Because of this database, we can make accurate projections about water requirements and soil moisture. The last part consists of commanding our system by the best method(algorithm) of prediction for our case. Theratio of the reserved water was predicted with the use of machine learning (a model decision tree), which enabled us to generate these forecasts. By these forecasts command the valve. In practice, we use an electronic card that can support this type of machine learning algorithm. For this, we used the Raspberry pi card. Node-RED is the most suitable interface to apply this algorithm also it allows us to monitor in real-time with the laptop(local) and with the smartphone(4G) all measured by a dashboard. The IP address of raspberry needs with port1880 requires. This approach allows us to manage our system in a more efficient, automated, and intelligent manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr大壮发布了新的文献求助30
1秒前
所所应助wst采纳,获得10
2秒前
2秒前
runpeng发布了新的文献求助10
3秒前
穆亦擎完成签到 ,获得积分10
3秒前
Much完成签到 ,获得积分10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
Dan应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得20
5秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
巨小俊完成签到,获得积分10
6秒前
6秒前
8秒前
qiu发布了新的文献求助10
8秒前
Meron完成签到,获得积分10
9秒前
UTMOST发布了新的文献求助10
10秒前
JamesPei应助tqs采纳,获得10
13秒前
Jasper应助一只小鸮采纳,获得10
14秒前
充电宝应助ssss采纳,获得30
14秒前
14秒前
14秒前
wst完成签到,获得积分20
14秒前
15秒前
板凳儿cc发布了新的文献求助20
15秒前
15秒前
15秒前
xyr发布了新的文献求助30
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
读者个体因素对汉语阅读中眼动行为的影响 710
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560199
求助须知:如何正确求助?哪些是违规求助? 3134388
关于积分的说明 9407104
捐赠科研通 2834515
什么是DOI,文献DOI怎么找? 1558139
邀请新用户注册赠送积分活动 727912
科研通“疑难数据库(出版商)”最低求助积分说明 716582