作者
Guangshen Li,Lei Yang,Gang Wu,Zhiguo Qian,Haijun Li
摘要
Discectomy and interbody fusion are widely used in the treatment of intervertebral disc-related diseases. Among them, the interbody cage plays a significant role. However, the complications related to the interbody cage, such as nonunion or pseudoarthrosis, subsidence, loosening, and prolapse of the cage, cannot be ignored. By changing the design and material of the interbody fusion cage, a better fusion effect can be obtained, the incidence of appeal complications can be reduced, and the quality of life of patients after interbody fusion can be improved.This study reviewed the research progress of cage design and material and discussed the methods of cage design and material to promote intervertebral fusion.Current treatment of cervical and lumbar degenerative disease requires interbody fusion to maintain decompression and to promote fusion and reduce the incidence of fusion failure through improvements in implant material, design, internal structure, and function. However, interbody fusion is not an optimal solution for treating vertebral instability.Abbreviations: ACDF, Anterior cervical discectomy and fusion; ALIF, anterior lumbar interbody fusion; Axi-aLIF, axial lumbar interbody fusion; BAK fusion cage, Bagby and Kuslich fusion cage; CADR, cervical artificial disc replacement; DBM, decalcified bone matrix; HA, hydroxyapatite; LLIF/XLIF, lateral or extreme lateral interbody fusion; MIS-TLIF, minimally invasive transforaminal lumbar interbody fusion; OLIF/ATP, oblique lumbar interbody fusion/anterior to psoas; PEEK, Poly-ether-ether-ketone; PLIF, posterior lumbar interbody fusion; ROI-C, Zero-profile Anchored Spacer; ROM, range of motion; SLM, selective melting forming; TLIF, transforaminal lumbar interbody fusion or.