MFLP-PINN: A physics-informed neural network for multiaxial fatigue life prediction

人工神经网络 功能(生物学) 平面(几何) 计算机科学 人工智能 数学 几何学 进化生物学 生物
作者
GaoYuan He,Yongxiang Zhao,ChuLiang Yan
出处
期刊:European Journal of Mechanics A-solids [Elsevier BV]
卷期号:98: 104889-104889 被引量:54
标识
DOI:10.1016/j.euromechsol.2022.104889
摘要

In this study, a physics-informed neural network (MFLP-PINN), combining multiaxial fatigue critical plane model and the neural network, is proposed for life prediction. First, a multiaxial fatigue life prediction model based on the critical plane approach is proposed, which takes the equivalent strain amplitude on the critical plane as the main damage parameter, and considers the normal strain energy on the critical plane. Then, a total of four prediction models including the new critical plane model are integrated into the loss function of a neural network to build the MFLP-PINN. The accuracy of the proposed critical plane criterion and the MFLP-PINN are respectively verified using multiaxial fatigue test data of three materials. Finally, the results show that the prediction model integrated into the loss function has a significant impact on the neural network prediction. For a specific material, integrating a life prediction model with good prediction ability to this material as the loss function into a neural network model is helpful to improve prediction accuracy. Conversely, integrating a life prediction model with poor prediction ability to this material as the loss function into a neural network model will reduce the prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zd发布了新的文献求助10
刚刚
1秒前
yifei完成签到,获得积分10
1秒前
辛勤冰彤完成签到,获得积分10
1秒前
星星之火发布了新的文献求助10
1秒前
Orange应助林钰浩采纳,获得10
2秒前
游舒平发布了新的文献求助10
3秒前
华仔应助三秋采纳,获得10
3秒前
博修发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
yangzai发布了新的文献求助10
5秒前
5秒前
liberty发布了新的文献求助10
6秒前
7秒前
卡卡西应助科研通管家采纳,获得30
8秒前
nemuruinu应助科研通管家采纳,获得20
8秒前
李健应助科研通管家采纳,获得20
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
sh完成签到,获得积分10
8秒前
speak发布了新的文献求助10
8秒前
8秒前
田様应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
卡卡西应助科研通管家采纳,获得30
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
xigua应助科研通管家采纳,获得10
9秒前
9秒前
慕青应助科研通管家采纳,获得30
9秒前
小核桃发布了新的文献求助30
9秒前
英俊的铭应助风清扬采纳,获得10
10秒前
Akim应助北彧采纳,获得10
11秒前
盼盼527发布了新的文献求助10
11秒前
李小咖完成签到,获得积分10
12秒前
12秒前
思源应助星星之火采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961189
求助须知:如何正确求助?哪些是违规求助? 3507456
关于积分的说明 11136282
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790545
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803152