Dependent Task Scheduling and Offloading for Minimizing Deadline Violation Ratio in Mobile Edge Computing Networks

计算机科学 移动边缘计算 调度(生产过程) 分布式计算 计算卸载 水准点(测量) 有向无环图 任务(项目管理) 计算 作业车间调度 GSM演进的增强数据速率 边缘计算 服务器 数学优化 算法 计算机网络 布线(电子设计自动化) 人工智能 数学 管理 经济 大地测量学 地理
作者
Shumei Liu,Yao Yu,Xiao Lian,Yuze Feng,Changyang She,Phee Lep Yeoh,Lei Guo,Branka Vucetic,Yonghui Li
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (2): 538-554 被引量:15
标识
DOI:10.1109/jsac.2022.3233532
摘要

This paper considers computation offloading for mobile applications with task-dependency requirements in mobile edge computing (MEC) systems. Based on the online arrival patterns and various delay constraints of practical applications, we focus on minimizing the system deadline violation ratio (DVR) to improve the overall reliability performance. Specifically, we propose a DVR minimization computation offloading scheme with task migration and merging, in which the task migration and merging model is designed to construct an overall directed acyclic graph (DAG) for all currently dependent tasks. We consider a multi-slot MEC system where applications arrive slot-by-slot without prior knowledge of future arrivals. Then given the number of application arrivals at each time slot, we equivalently transform the DVR minimization problem into a problem that maximizes the number of completed applications in a finite time horizon. The above problem is challenging to determine the optimal task execution order for different applications with various task dependencies and delay constraints. To address this, we develop a migration-enabled multi-priority task sequencing algorithm, which creatively introduces several task priority metrics and determines the optimal task execution order. Then, a deep deterministic policy gradient (DDPG)-based learning algorithm is developed to find the optimal offloading policy. Experimental results demonstrate that the proposed scheme can reduce the system DVR by 60.34%~70.3% compared with existing benchmark schemes under various network scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研圣体发布了新的文献求助10
刚刚
zz完成签到,获得积分20
1秒前
帅的一批完成签到,获得积分10
1秒前
hwq发布了新的文献求助30
1秒前
2秒前
hai发布了新的文献求助10
2秒前
文静煜城完成签到,获得积分10
2秒前
2秒前
Gilana发布了新的文献求助10
2秒前
ED应助壮观的擎采纳,获得10
2秒前
ED应助壮观的擎采纳,获得10
2秒前
ED应助壮观的擎采纳,获得10
2秒前
科目三应助壮观的擎采纳,获得10
2秒前
慕青应助壮观的擎采纳,获得10
3秒前
斯文败类应助壮观的擎采纳,获得10
3秒前
幸运星完成签到 ,获得积分10
3秒前
3秒前
隐形曼青应助77采纳,获得10
3秒前
LiZhenhua完成签到,获得积分10
4秒前
文静煜城发布了新的文献求助10
4秒前
冷艳的小懒虫完成签到 ,获得积分10
4秒前
啦啦完成签到 ,获得积分10
4秒前
吴淑明发布了新的文献求助10
5秒前
包容的垣完成签到,获得积分10
5秒前
dayaya发布了新的文献求助10
5秒前
5秒前
5秒前
傲娇老五发布了新的文献求助10
5秒前
mirayq发布了新的文献求助10
5秒前
打打应助Yola采纳,获得10
6秒前
易烊千玺完成签到,获得积分10
6秒前
所所应助HealthyCH采纳,获得10
6秒前
小杨同学完成签到,获得积分10
6秒前
7秒前
CodeCraft应助hwq采纳,获得10
7秒前
UTMOST完成签到,获得积分10
7秒前
许熙完成签到,获得积分10
7秒前
今后应助科研小道采纳,获得10
7秒前
肖星星完成签到,获得积分10
7秒前
超帅柚子发布了新的文献求助20
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954042
求助须知:如何正确求助?哪些是违规求助? 3500003
关于积分的说明 11097832
捐赠科研通 3230521
什么是DOI,文献DOI怎么找? 1785972
邀请新用户注册赠送积分活动 869759
科研通“疑难数据库(出版商)”最低求助积分说明 801583