DGANDDI: Double Generative Adversarial Networks for Drug-Drug Interaction Prediction

计算机科学 药品 互补性(分子生物学) 生成对抗网络 交互信息 生成语法 对抗制 机器学习 人工智能 深度学习 医学 药理学 数学 生物 遗传学 统计
作者
Hui Yu,KangKang Li,Jian‐Yu Shi
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 1854-1863 被引量:14
标识
DOI:10.1109/tcbb.2022.3219883
摘要

Co-administration of multiple drugs may cause adverse drug interactions and side effects that damage the body. Therefore, accurate prediction of drug-drug interaction (DDI) events is of great importance. Recently, many computational methods have been proposed for predicting DDI associated events. However, most existing methods merely considered drug associated attribute information or topological information in DDI network, ignoring the complementary knowledge between them. Therefore, to effectively explore the complementarity of drug attribute and topological information of DDI network, we propose a deep learning model based adversarial learning strategy, which is named as DGANDDI. In DGANDDI, we design a two-GAN architecture to deeply capture the complementary knowledge between drug attribute and topological information of DDI network, thus more comprehensive drug representations can be learned. We conduct extensive experiments on real world dataset. The experimental results show that DGANDDI can effectively predict DDI occurrence and outperforms the comparison of the state-of-the-art models. We also perform ablation studies that demonstrate that DGANDDI is effective and that it is robust in DDI prediction tasks, even in the case of a scarcity of labeled DDIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
萌羊发布了新的文献求助10
1秒前
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
smottom应助科研通管家采纳,获得10
1秒前
smottom应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
香菜完成签到,获得积分10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
smottom应助科研通管家采纳,获得10
2秒前
smottom应助科研通管家采纳,获得10
2秒前
juju1234完成签到,获得积分10
2秒前
2秒前
黑白发布了新的文献求助10
2秒前
2秒前
郭峰完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
ZHANG发布了新的文献求助20
3秒前
笨笨山芙应助科研通管家采纳,获得10
3秒前
3秒前
笨笨山芙应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933