亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning assisted contrast-enhanced CT–based diagnosis of cervical lymph node metastasis of oral cancer: a retrospective study of 1466 cases

医学 神经组阅片室 阶段(地层学) 淋巴结 分割 介入放射学 深度学习 放射科 转移 癌症 淋巴结转移 人工智能 病理 内科学 计算机科学 神经学 古生物学 精神科 生物
作者
Xiaoshuai Xu,Linlin Xi,Lili Wei,Luping Wu,Yuming Xu,Bailve Liu,Bo Li,Ke Liu,Gaigai Hou,Hao Lin,Zhe Shao,Kehua Su,Z. J. Shang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (6): 4303-4312 被引量:12
标识
DOI:10.1007/s00330-022-09355-5
摘要

Lymph node (LN) metastasis is a common cause of recurrence in oral cancer; however, the accuracy of distinguishing positive and negative LNs is not ideal. Here, we aimed to develop a deep learning model that can identify, locate, and distinguish LNs in contrast-enhanced CT (CECT) images with a higher accuracy.The preoperative CECT images and corresponding postoperative pathological diagnoses of 1466 patients with oral cancer from our hospital were retrospectively collected. In stage I, full-layer images (five common anatomical structures) were labeled; in stage II, negative and positive LNs were separately labeled. The stage I model was innovatively employed for stage II training to improve accuracy with the idea of transfer learning (TL). The Mask R-CNN instance segmentation framework was selected for model construction and training. The accuracy of the model was compared with that of human observers.A total of 5412 images and 5601 images were labeled in stage I and II, respectively. The stage I model achieved an excellent segmentation effect in the test set (AP50-0.7249). The positive LN accuracy of the stage II TL model was similar to that of the radiologist and much higher than that of the surgeons and students (0.7042 vs. 0.7647 (p = 0.243), 0.4216 (p < 0.001), and 0.3629 (p < 0.001)). The clinical accuracy of the model was highest (0.8509 vs. 0.8000, 0.5500, 0.4500, and 0.6658 of the Radiology Department).The model was constructed using a deep neural network and had high accuracy in LN localization and metastasis discrimination, which could contribute to accurate diagnosis and customized treatment planning.• Lymph node metastasis is not well recognized with modern medical imaging tools. • Transfer learning can improve the accuracy of deep learning model prediction. • Deep learning can aid the accurate identification of lymph node metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
yar应助wen采纳,获得10
3秒前
核桃发布了新的文献求助30
6秒前
迷人问兰发布了新的文献求助10
11秒前
18秒前
牛牛完成签到 ,获得积分10
1分钟前
时间煮雨我煮鱼完成签到,获得积分10
1分钟前
Plum22发布了新的文献求助10
1分钟前
BiuBiu怪完成签到,获得积分10
2分钟前
bkagyin应助陈苗采纳,获得10
2分钟前
核桃发布了新的文献求助10
3分钟前
Plum22完成签到 ,获得积分10
3分钟前
自由觅松发布了新的文献求助20
3分钟前
3分钟前
核桃发布了新的文献求助10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
阳阳阳发布了新的文献求助10
3分钟前
阳阳阳完成签到,获得积分10
4分钟前
4分钟前
4分钟前
CATH完成签到 ,获得积分10
4分钟前
4分钟前
zhanghao发布了新的文献求助10
4分钟前
Hillson完成签到,获得积分10
4分钟前
糯糯完成签到 ,获得积分10
4分钟前
5分钟前
自由飞阳完成签到,获得积分10
5分钟前
小羡完成签到 ,获得积分10
5分钟前
滕皓轩完成签到 ,获得积分20
5分钟前
aDou完成签到 ,获得积分10
5分钟前
George完成签到,获得积分10
5分钟前
oscar发布了新的文献求助10
5分钟前
oscar完成签到,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990084
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256447
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228