Deep learning assisted contrast-enhanced CT–based diagnosis of cervical lymph node metastasis of oral cancer: a retrospective study of 1466 cases

医学 神经组阅片室 阶段(地层学) 淋巴结 分割 介入放射学 深度学习 放射科 转移 癌症 淋巴结转移 人工智能 病理 内科学 计算机科学 神经学 古生物学 精神科 生物
作者
Xiaoshuai Xu,Linlin Xi,Lili Wei,Luping Wu,Yuming Xu,Bailve Liu,Bo Li,Ke Liu,Gaigai Hou,Hao Lin,Zhe Shao,Kehua Su,Z. J. Shang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (6): 4303-4312 被引量:12
标识
DOI:10.1007/s00330-022-09355-5
摘要

Lymph node (LN) metastasis is a common cause of recurrence in oral cancer; however, the accuracy of distinguishing positive and negative LNs is not ideal. Here, we aimed to develop a deep learning model that can identify, locate, and distinguish LNs in contrast-enhanced CT (CECT) images with a higher accuracy.The preoperative CECT images and corresponding postoperative pathological diagnoses of 1466 patients with oral cancer from our hospital were retrospectively collected. In stage I, full-layer images (five common anatomical structures) were labeled; in stage II, negative and positive LNs were separately labeled. The stage I model was innovatively employed for stage II training to improve accuracy with the idea of transfer learning (TL). The Mask R-CNN instance segmentation framework was selected for model construction and training. The accuracy of the model was compared with that of human observers.A total of 5412 images and 5601 images were labeled in stage I and II, respectively. The stage I model achieved an excellent segmentation effect in the test set (AP50-0.7249). The positive LN accuracy of the stage II TL model was similar to that of the radiologist and much higher than that of the surgeons and students (0.7042 vs. 0.7647 (p = 0.243), 0.4216 (p < 0.001), and 0.3629 (p < 0.001)). The clinical accuracy of the model was highest (0.8509 vs. 0.8000, 0.5500, 0.4500, and 0.6658 of the Radiology Department).The model was constructed using a deep neural network and had high accuracy in LN localization and metastasis discrimination, which could contribute to accurate diagnosis and customized treatment planning.• Lymph node metastasis is not well recognized with modern medical imaging tools. • Transfer learning can improve the accuracy of deep learning model prediction. • Deep learning can aid the accurate identification of lymph node metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
完美世界应助Infinit采纳,获得10
4秒前
Teko发布了新的文献求助10
6秒前
Akim应助油个大饼呜呜呜采纳,获得10
6秒前
chris完成签到,获得积分10
6秒前
FXQ123_范发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
9秒前
9秒前
机灵飞阳发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
13秒前
斯文败类应助Teko采纳,获得10
13秒前
脑洞疼应助小左采纳,获得10
15秒前
17秒前
嗯嗯发布了新的文献求助10
18秒前
18秒前
浮生发布了新的文献求助10
18秒前
19秒前
Teko完成签到,获得积分10
22秒前
英俊的铭应助程之杭采纳,获得10
22秒前
25秒前
喻义梅发布了新的文献求助10
25秒前
jk发布了新的文献求助10
26秒前
可爱的安萱完成签到,获得积分10
28秒前
orixero应助尼莫采纳,获得10
29秒前
30秒前
泡面完成签到 ,获得积分10
30秒前
30秒前
31秒前
31秒前
JUdy发布了新的文献求助20
32秒前
SYLH应助蓝天白云采纳,获得30
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136