Deep learning assisted contrast-enhanced CT–based diagnosis of cervical lymph node metastasis of oral cancer: a retrospective study of 1466 cases

医学 神经组阅片室 阶段(地层学) 淋巴结 分割 介入放射学 深度学习 放射科 转移 癌症 淋巴结转移 人工智能 病理 内科学 计算机科学 神经学 古生物学 精神科 生物
作者
Xiaoshuai Xu,Linlin Xi,Lili Wei,Luping Wu,Yuming Xu,Bailve Liu,Bo Li,Ke Liu,Gaigai Hou,Hao Lin,Zhe Shao,Kehua Su,Z. J. Shang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (6): 4303-4312 被引量:12
标识
DOI:10.1007/s00330-022-09355-5
摘要

Lymph node (LN) metastasis is a common cause of recurrence in oral cancer; however, the accuracy of distinguishing positive and negative LNs is not ideal. Here, we aimed to develop a deep learning model that can identify, locate, and distinguish LNs in contrast-enhanced CT (CECT) images with a higher accuracy.The preoperative CECT images and corresponding postoperative pathological diagnoses of 1466 patients with oral cancer from our hospital were retrospectively collected. In stage I, full-layer images (five common anatomical structures) were labeled; in stage II, negative and positive LNs were separately labeled. The stage I model was innovatively employed for stage II training to improve accuracy with the idea of transfer learning (TL). The Mask R-CNN instance segmentation framework was selected for model construction and training. The accuracy of the model was compared with that of human observers.A total of 5412 images and 5601 images were labeled in stage I and II, respectively. The stage I model achieved an excellent segmentation effect in the test set (AP50-0.7249). The positive LN accuracy of the stage II TL model was similar to that of the radiologist and much higher than that of the surgeons and students (0.7042 vs. 0.7647 (p = 0.243), 0.4216 (p < 0.001), and 0.3629 (p < 0.001)). The clinical accuracy of the model was highest (0.8509 vs. 0.8000, 0.5500, 0.4500, and 0.6658 of the Radiology Department).The model was constructed using a deep neural network and had high accuracy in LN localization and metastasis discrimination, which could contribute to accurate diagnosis and customized treatment planning.• Lymph node metastasis is not well recognized with modern medical imaging tools. • Transfer learning can improve the accuracy of deep learning model prediction. • Deep learning can aid the accurate identification of lymph node metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk119完成签到,获得积分10
刚刚
Coai517完成签到 ,获得积分10
1秒前
1秒前
小甘发布了新的文献求助10
2秒前
TG_FY完成签到,获得积分10
2秒前
yuan完成签到,获得积分10
3秒前
橙子完成签到,获得积分10
3秒前
谦让之云完成签到 ,获得积分10
3秒前
3秒前
愉快书琴完成签到,获得积分10
4秒前
4秒前
SYLH应助WangZhen采纳,获得10
5秒前
福尔摩云完成签到,获得积分10
6秒前
无辜的秀完成签到,获得积分10
7秒前
Charles完成签到,获得积分10
9秒前
hao发布了新的文献求助10
9秒前
小嘎发布了新的文献求助10
9秒前
ABin完成签到,获得积分10
11秒前
Jasper应助qixiaoqi采纳,获得10
11秒前
FangyingTang完成签到 ,获得积分10
12秒前
金枪鱼子完成签到,获得积分10
12秒前
theyoung发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
赘婿应助liu采纳,获得10
13秒前
小马甲应助清仔采纳,获得10
13秒前
13秒前
luoyue完成签到,获得积分10
13秒前
yuan发布了新的文献求助10
14秒前
科研通AI5应助JR采纳,获得30
14秒前
15秒前
海阔天空发布了新的文献求助10
16秒前
SYLH应助WangZhen采纳,获得10
16秒前
票子发布了新的文献求助10
16秒前
苹果柜子完成签到 ,获得积分10
16秒前
活泼的平灵完成签到,获得积分10
17秒前
愤怒的咖啡完成签到,获得积分10
17秒前
愉快的银耳汤完成签到,获得积分10
18秒前
又又完成签到,获得积分10
19秒前
ypres完成签到 ,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066