Deep learning assisted contrast-enhanced CT–based diagnosis of cervical lymph node metastasis of oral cancer: a retrospective study of 1466 cases

医学 神经组阅片室 阶段(地层学) 淋巴结 分割 介入放射学 深度学习 放射科 转移 癌症 淋巴结转移 人工智能 病理 内科学 计算机科学 神经学 古生物学 精神科 生物
作者
Xiaoshuai Xu,Linlin Xi,Lili Wei,Luping Wu,Yuming Xu,Bailve Liu,Bo Li,Ke Liu,Gaigai Hou,Hao Lin,Zhe Shao,Kehua Su,Z. J. Shang
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (6): 4303-4312 被引量:19
标识
DOI:10.1007/s00330-022-09355-5
摘要

Lymph node (LN) metastasis is a common cause of recurrence in oral cancer; however, the accuracy of distinguishing positive and negative LNs is not ideal. Here, we aimed to develop a deep learning model that can identify, locate, and distinguish LNs in contrast-enhanced CT (CECT) images with a higher accuracy.The preoperative CECT images and corresponding postoperative pathological diagnoses of 1466 patients with oral cancer from our hospital were retrospectively collected. In stage I, full-layer images (five common anatomical structures) were labeled; in stage II, negative and positive LNs were separately labeled. The stage I model was innovatively employed for stage II training to improve accuracy with the idea of transfer learning (TL). The Mask R-CNN instance segmentation framework was selected for model construction and training. The accuracy of the model was compared with that of human observers.A total of 5412 images and 5601 images were labeled in stage I and II, respectively. The stage I model achieved an excellent segmentation effect in the test set (AP50-0.7249). The positive LN accuracy of the stage II TL model was similar to that of the radiologist and much higher than that of the surgeons and students (0.7042 vs. 0.7647 (p = 0.243), 0.4216 (p < 0.001), and 0.3629 (p < 0.001)). The clinical accuracy of the model was highest (0.8509 vs. 0.8000, 0.5500, 0.4500, and 0.6658 of the Radiology Department).The model was constructed using a deep neural network and had high accuracy in LN localization and metastasis discrimination, which could contribute to accurate diagnosis and customized treatment planning.• Lymph node metastasis is not well recognized with modern medical imaging tools. • Transfer learning can improve the accuracy of deep learning model prediction. • Deep learning can aid the accurate identification of lymph node metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助Yoyo采纳,获得10
1秒前
情怀应助指北针采纳,获得10
2秒前
2秒前
失眠鸭完成签到,获得积分10
2秒前
yznfly应助zyx采纳,获得20
2秒前
3秒前
3秒前
贪玩心情发布了新的文献求助10
3秒前
4秒前
坚强的曼雁完成签到,获得积分10
4秒前
jiu完成签到,获得积分10
4秒前
4秒前
大鸣王潮发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
chenjie发布了新的文献求助10
6秒前
等待雅寒完成签到,获得积分10
6秒前
香蕉觅云应助daydreamammaking采纳,获得10
6秒前
科研通AI6应助欢呼的小玉采纳,获得30
6秒前
7秒前
cxyyy完成签到,获得积分10
7秒前
7秒前
结实的元灵完成签到,获得积分10
7秒前
8秒前
哆啦A梦发布了新的文献求助10
8秒前
8秒前
彳亍1117应助gao采纳,获得10
8秒前
文静的柚子完成签到,获得积分10
8秒前
min完成签到,获得积分20
9秒前
9秒前
伶俐骁发布了新的文献求助10
9秒前
10秒前
Akim应助sunny采纳,获得10
10秒前
完美世界应助飞鸟采纳,获得10
10秒前
baiyang99完成签到,获得积分10
10秒前
追寻的巧曼完成签到,获得积分20
10秒前
10秒前
美味吐司完成签到,获得积分20
10秒前
liu发布了新的文献求助30
11秒前
雨下着的坡道完成签到,获得积分10
11秒前
guoguo发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5523959
求助须知:如何正确求助?哪些是违规求助? 4614601
关于积分的说明 14543506
捐赠科研通 4552337
什么是DOI,文献DOI怎么找? 2494743
邀请新用户注册赠送积分活动 1475510
关于科研通互助平台的介绍 1447207