Radiomics-based evaluation and possible characterization of dynamic contrast enhanced (DCE) perfusion derived different sub-regions of Glioblastoma

医学 无线电技术 流体衰减反转恢复 胶质母细胞瘤 灌注 磁共振成像 核医学 放射科 对比度(视觉) 灌注扫描 水肿 特征(语言学) 人工智能 计算机科学 内科学 癌症研究 哲学 语言学
作者
P. Suhail Parvaze,Rupsa Bhattacharjee,Anup Singh,Sunita Ahlawat,Rana Patir,Sandeep Vaishya,Tejas Jatin Shah,Rakesh K. Gupta
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:159: 110655-110655 被引量:6
标识
DOI:10.1016/j.ejrad.2022.110655
摘要

Glioblastoma (GB) is among the most devastative brain tumors, which usually comprises sub-regions like enhancing tumor (ET), non-enhancing tumor (NET), edema (ED), and necrosis (NEC) as described on MRI. Semi-automated algorithms to extract these tumor subpart volumes and boundaries have been demonstrated using dynamic contrast-enhanced (DCE) perfusion imaging. We aim to characterize these sub-regions derived from DCE perfusion MRI using routine 3D post-contrast-T1 (T1GD) and FLAIR images with the aid of Radiomics analysis. We also explored the possibility of separating edema from tumor sub-regions by extracting the most influential radiomics features.A total of 89 patients with histopathological confirmed IDH wild type GB were considered, who underwent the MR imaging with DCE perfusion-MRI. Perfusion and kinetic indices were computed and further used to segment tumor sub-regions. Radiomics features were extracted from FLAIR and T1GD images with PyRadiomics tool. Statistical analysis of the features was carried out using two approaches as well as machine learning (ML) models were constructed separately, i) within different tumor sub-regions and ii) ED as one category and the remaining sub-regions combined as another category. ML based predictive feature maps was also constructed.Seven features found to be statistically significant to differentiate tumor sub-regions in FLAIR and T1GD images, with p-value < 0.05 and AUC values in the range of 0.72 to 0.93. However, the edema features stood out in the analysis. In the second approach, the ML model was able to categorize the ED from the rest of the tumor sub-regions in FLAIR and T1GD images with AUC of 0.95 and 0.89 respectively.Radiomics-based specific feature values and maps help to characterize different tumor sub-regions. However, the GLDM_DependenceNonUniformity feature appears to be most specific for separating edema from the remaining tumor sub-regions using conventional FLAIR images. This may be of value in the segmentation of edema from tumors using conventional MRI in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aom发布了新的文献求助20
1秒前
可宝想当富婆完成签到 ,获得积分10
1秒前
火星上的天思完成签到,获得积分10
1秒前
1秒前
LIN完成签到,获得积分10
1秒前
JamesPei应助缓慢易云采纳,获得10
2秒前
CodeCraft应助Laraine采纳,获得10
3秒前
3秒前
卉酱完成签到,获得积分10
3秒前
Kate完成签到,获得积分10
3秒前
林夏发布了新的文献求助10
3秒前
小思雅发布了新的文献求助10
3秒前
ZJCGD发布了新的文献求助10
4秒前
踹脸大妈完成签到,获得积分10
4秒前
佳仪完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
Akim应助哎呀呀采纳,获得10
7秒前
sljzhangbiao11完成签到,获得积分10
8秒前
宋宋关注了科研通微信公众号
8秒前
JamesPei应助12334采纳,获得10
8秒前
8秒前
zzzzz给zzzzz的求助进行了留言
8秒前
梦在远方完成签到 ,获得积分10
8秒前
9秒前
烟花应助牛牛采纳,获得10
9秒前
满意的山水完成签到,获得积分20
11秒前
11秒前
lcx66666发布了新的文献求助10
11秒前
DONG完成签到,获得积分10
11秒前
完美世界应助十六采纳,获得10
11秒前
0411345完成签到,获得积分10
11秒前
12秒前
猪嗝铁铁完成签到 ,获得积分10
12秒前
无尽夏完成签到,获得积分10
12秒前
累哥发布了新的文献求助10
12秒前
YK发布了新的文献求助10
12秒前
Caicai发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582