Radiomics-based evaluation and possible characterization of dynamic contrast enhanced (DCE) perfusion derived different sub-regions of Glioblastoma

医学 无线电技术 流体衰减反转恢复 胶质母细胞瘤 灌注 磁共振成像 核医学 放射科 对比度(视觉) 灌注扫描 水肿 特征(语言学) 人工智能 计算机科学 内科学 癌症研究 哲学 语言学
作者
P. Suhail Parvaze,Rupsa Bhattacharjee,Anup Singh,Sunita Ahlawat,Rana Patir,Sandeep Vaishya,Tejas Jatin Shah,Rakesh K. Gupta
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:159: 110655-110655 被引量:6
标识
DOI:10.1016/j.ejrad.2022.110655
摘要

Glioblastoma (GB) is among the most devastative brain tumors, which usually comprises sub-regions like enhancing tumor (ET), non-enhancing tumor (NET), edema (ED), and necrosis (NEC) as described on MRI. Semi-automated algorithms to extract these tumor subpart volumes and boundaries have been demonstrated using dynamic contrast-enhanced (DCE) perfusion imaging. We aim to characterize these sub-regions derived from DCE perfusion MRI using routine 3D post-contrast-T1 (T1GD) and FLAIR images with the aid of Radiomics analysis. We also explored the possibility of separating edema from tumor sub-regions by extracting the most influential radiomics features.A total of 89 patients with histopathological confirmed IDH wild type GB were considered, who underwent the MR imaging with DCE perfusion-MRI. Perfusion and kinetic indices were computed and further used to segment tumor sub-regions. Radiomics features were extracted from FLAIR and T1GD images with PyRadiomics tool. Statistical analysis of the features was carried out using two approaches as well as machine learning (ML) models were constructed separately, i) within different tumor sub-regions and ii) ED as one category and the remaining sub-regions combined as another category. ML based predictive feature maps was also constructed.Seven features found to be statistically significant to differentiate tumor sub-regions in FLAIR and T1GD images, with p-value < 0.05 and AUC values in the range of 0.72 to 0.93. However, the edema features stood out in the analysis. In the second approach, the ML model was able to categorize the ED from the rest of the tumor sub-regions in FLAIR and T1GD images with AUC of 0.95 and 0.89 respectively.Radiomics-based specific feature values and maps help to characterize different tumor sub-regions. However, the GLDM_DependenceNonUniformity feature appears to be most specific for separating edema from the remaining tumor sub-regions using conventional FLAIR images. This may be of value in the segmentation of edema from tumors using conventional MRI in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖寻琴发布了新的文献求助10
1秒前
安安完成签到 ,获得积分10
2秒前
城门楼子发布了新的文献求助10
2秒前
CipherSage应助Aileen采纳,获得10
3秒前
4秒前
4秒前
小远完成签到,获得积分10
6秒前
6秒前
咕噜噜发布了新的文献求助10
7秒前
1234发布了新的文献求助30
8秒前
10秒前
11秒前
Jing发布了新的文献求助10
11秒前
13秒前
13秒前
孙兴燕完成签到,获得积分10
14秒前
寒冷的绿真完成签到 ,获得积分10
14秒前
hangOn发布了新的文献求助10
14秒前
15秒前
16秒前
ZLQ2023发布了新的文献求助10
16秒前
16秒前
善学以致用应助咕噜噜采纳,获得10
16秒前
温敏发布了新的文献求助10
16秒前
Legend_完成签到 ,获得积分10
17秒前
Jing完成签到,获得积分20
18秒前
积极向上的20岁青年完成签到,获得积分20
18秒前
碧蓝的紫翠完成签到,获得积分20
18秒前
Aileen发布了新的文献求助10
19秒前
zw发布了新的文献求助30
21秒前
21秒前
酷波er应助研友_qZ6V1Z采纳,获得30
21秒前
21秒前
22秒前
cuber完成签到 ,获得积分10
22秒前
22秒前
23秒前
25秒前
Aileen完成签到,获得积分10
26秒前
踏实天空应助温敏采纳,获得10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138986
求助须知:如何正确求助?哪些是违规求助? 2789907
关于积分的说明 7793124
捐赠科研通 2446296
什么是DOI,文献DOI怎么找? 1301017
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096