Radiomics-based evaluation and possible characterization of dynamic contrast enhanced (DCE) perfusion derived different sub-regions of Glioblastoma

医学 无线电技术 流体衰减反转恢复 胶质母细胞瘤 灌注 磁共振成像 核医学 放射科 对比度(视觉) 灌注扫描 水肿 特征(语言学) 人工智能 计算机科学 内科学 癌症研究 哲学 语言学
作者
Suhail P. Parvaze,Rupsa Bhattacharjee,Anup Singh,Sunita Ahlawat,Rana Patir,Sandeep Vaishya,Tejas J. Shah,Rakesh K. Gupta
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:159: 110655-110655 被引量:9
标识
DOI:10.1016/j.ejrad.2022.110655
摘要

Glioblastoma (GB) is among the most devastative brain tumors, which usually comprises sub-regions like enhancing tumor (ET), non-enhancing tumor (NET), edema (ED), and necrosis (NEC) as described on MRI. Semi-automated algorithms to extract these tumor subpart volumes and boundaries have been demonstrated using dynamic contrast-enhanced (DCE) perfusion imaging. We aim to characterize these sub-regions derived from DCE perfusion MRI using routine 3D post-contrast-T1 (T1GD) and FLAIR images with the aid of Radiomics analysis. We also explored the possibility of separating edema from tumor sub-regions by extracting the most influential radiomics features.A total of 89 patients with histopathological confirmed IDH wild type GB were considered, who underwent the MR imaging with DCE perfusion-MRI. Perfusion and kinetic indices were computed and further used to segment tumor sub-regions. Radiomics features were extracted from FLAIR and T1GD images with PyRadiomics tool. Statistical analysis of the features was carried out using two approaches as well as machine learning (ML) models were constructed separately, i) within different tumor sub-regions and ii) ED as one category and the remaining sub-regions combined as another category. ML based predictive feature maps was also constructed.Seven features found to be statistically significant to differentiate tumor sub-regions in FLAIR and T1GD images, with p-value < 0.05 and AUC values in the range of 0.72 to 0.93. However, the edema features stood out in the analysis. In the second approach, the ML model was able to categorize the ED from the rest of the tumor sub-regions in FLAIR and T1GD images with AUC of 0.95 and 0.89 respectively.Radiomics-based specific feature values and maps help to characterize different tumor sub-regions. However, the GLDM_DependenceNonUniformity feature appears to be most specific for separating edema from the remaining tumor sub-regions using conventional FLAIR images. This may be of value in the segmentation of edema from tumors using conventional MRI in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小马甲应助Herb采纳,获得10
刚刚
大模型应助MING采纳,获得10
1秒前
1秒前
1秒前
淼淼完成签到 ,获得积分10
1秒前
1秒前
biubiu完成签到,获得积分10
1秒前
星辰大海应助五六七采纳,获得10
1秒前
小超人发布了新的文献求助10
2秒前
1111完成签到,获得积分10
2秒前
老和山发布了新的文献求助10
2秒前
我是老大应助勤劳小海豚采纳,获得10
2秒前
作案不留痕发布了新的文献求助100
2秒前
3秒前
3秒前
3秒前
Lee完成签到,获得积分10
3秒前
3秒前
江树远完成签到 ,获得积分10
4秒前
4秒前
nickel完成签到,获得积分10
4秒前
DDD发布了新的文献求助10
4秒前
4秒前
4秒前
santu完成签到,获得积分10
5秒前
5秒前
pauchiu完成签到,获得积分0
5秒前
可爱寄松发布了新的文献求助10
6秒前
陈进发布了新的文献求助10
6秒前
大模型应助开心的小熊采纳,获得30
6秒前
6秒前
橘猫123456发布了新的文献求助10
6秒前
阿九发布了新的文献求助10
6秒前
6秒前
经从梦发布了新的文献求助10
7秒前
ning发布了新的文献求助10
7秒前
8秒前
jiachun完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237