Predictive control optimization of chiller plants based on deep reinforcement learning

冷冻机 冷负荷 模型预测控制 暖通空调 冷水机组 强化学习 计算机科学 能源消耗 区间(图论) 控制理论(社会学) 能量(信号处理) 高效能源利用 冷冻水 控制(管理) 模拟 水冷 工程类 空调 人工智能 数学 机械工程 统计 气体压缩机 组合数学 电气工程 物理 热力学 制冷剂
作者
Kai He,Qiming Fu,You Lu,Yunzhe Wang,J.M. Luo,Hongjie Wu,Jianping Chen
出处
期刊:Journal of building engineering [Elsevier]
卷期号:76: 107158-107158
标识
DOI:10.1016/j.jobe.2023.107158
摘要

The energy consumption of HVAC systems is enormous, with chiller plants accounting for more than 50% of it. To improve energy efficiency, chiller systems are typically optimized at fixed intervals based on real-time building cooling loads, which usually assumes that the cooling load remains constant within the control interval. However, in many real applications, the current optimal control may be changed when the cooling load suddenly fluctuates. Although this issue can be addressed by shortening the control intervals, more frequent control can damage the equipment or increase energy consumption. To tackle this problem, this paper proposes a model-free predictive control method based on Reinforcement Learning (RL) control and Long Short-Term Memory (LSTM) prediction networks. The LSTM network aims to predict the future cooling load based on historical cooling load data, while the RL is used to make the best control for all chiller plants. By this way, the chilled water supply temperature setpoints can be optimized with the consideration of both instantaneous and predicted cooling loads to minimize energy consumption. In order to validate the effectiveness of the proposed method, an experimental simulation model was constructed based on actual chiller system parameters. Experimental results show that the energy-saving performance of the proposed method is superior to rule-based control (9% improvement), closely comparable to the model predictive control (0.73% difference), and further enhances energy-saving effects compared to non-predictive RL control without shortening the control interval. Additionally, the proposed method just learns by continuously interacting with the environment and does not require any accurate equipment models, making it a viable alternative for buildings when lacking extensive sensors and device information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李朝富发布了新的文献求助10
1秒前
8R60d8应助xzn1123采纳,获得10
2秒前
888发布了新的文献求助10
2秒前
2秒前
TT完成签到,获得积分20
2秒前
3秒前
沉鱼完成签到,获得积分10
3秒前
隐形方盒完成签到,获得积分10
3秒前
factor发布了新的文献求助10
4秒前
orixero应助芳芳反复采纳,获得10
4秒前
汉堡包应助李朝富采纳,获得10
4秒前
欧阳惜筠完成签到,获得积分10
5秒前
7秒前
TT发布了新的文献求助10
7秒前
二萌完成签到,获得积分10
8秒前
Jacob发布了新的文献求助10
8秒前
英姑应助科研通管家采纳,获得30
8秒前
starofjlu应助科研通管家采纳,获得20
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得30
9秒前
ZR应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
苏书白应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
专注寻菱完成签到,获得积分10
10秒前
10秒前
12秒前
Jsquare关注了科研通微信公众号
13秒前
碎碎念发布了新的文献求助10
14秒前
希望天下0贩的0应助factor采纳,获得10
15秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157277
求助须知:如何正确求助?哪些是违规求助? 2808570
关于积分的说明 7877973
捐赠科研通 2467049
什么是DOI,文献DOI怎么找? 1313150
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919