POS0928 DEEP LEARNING BASED ASSESSMENT OF SALIVARY GLAND ULTRASONOGRAPHY IMAGES FOR SUPPORTING THE DIAGNOSIS OF PRIMARY SJOGREN’S SYNDROME

医学 唾液腺 超声科 病理 皮肤病科 医学物理学 放射科
作者
Yan Geng,Xiongfeng Zhang,Zhe Zhang
标识
DOI:10.1136/annrheumdis-2023-eular.4614
摘要

Background

Salivary gland ultrasound (SGUS) has proven to be a promising tool for diagnosing primary Sjögren's syndrome (pSS). However, the widespread use of it as standardized diagnostic tools is limited by inter/intra operator variability.

Objectives

The aim of this study was to evaluate the utility of deep learning-based SGUS image assessment in the diagnosis of pSS.

Methods

Between Sep 2021 and Oct 2022, 1133 SGUS images of 137 patients from one center were included in this retrospective study. Among them, 61 patients with 480 images were diagnosed as pSS and 76 patients with 653 images were non-SS. All the SGUS image data were randomly divided into training dataset (50%), validation dataset (20%) and testing dataset (30%). The SGUS automatic classification model was developed by using a deep residual convolutional network architecture (RESNET). The predictive performance was validated by sensitivity, specifcity and area under reciver operating characteristic curve (ROC).

Results

When applying deep learning-based SGUS image assessment, it showed better performance than operator based SGUS score system by improving the specifcity (86.9% vs. 80.1%), while similar sensitivity (59.4% vs. 61.4%). The area under the ROC were comparable between them (0.800 vs 0.775).

Conclusion

Deep learning-based SGUS image assessment maybe an objective and promising tool compared to expert-based scoring of SGUS in the diagnosis of pSS. This may support SGUS as an effective and prospective diagnostic tool to supplement current diagnostic methods.

References

[1]Vukicevic AM, Milic V, Zabotti A, Hocevar A, De Lucia O, Filippou G, Frangi AF, Tzioufas A, De Vita S, Filipovic N. Radiomics-Based Assessment of Primary Sjögren's Syndrome From Salivary Gland Ultrasonography Images. IEEE J Biomed Health Inform. 2020 Mar;24(3):835-843. [2]Vukicevic AM, Radovic M, Zabotti A, Milic V, Hocevar A, Callegher SZ, De Lucia O, De Vita S, Filipovic N. Deep learning segmentation of Primary Sjögren's syndrome affected salivary glands from ultrasonography images. Comput Biol Med. 2021 Feb;129:104154.

Acknowledgements:

NIL.

Disclosure of Interests

None Declared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮卡丘完成签到 ,获得积分0
1秒前
悦耳映冬发布了新的文献求助10
1秒前
1秒前
1秒前
sunny完成签到,获得积分10
2秒前
圣尊鳕幽发布了新的文献求助10
3秒前
阿豪完成签到,获得积分10
3秒前
zyy发布了新的文献求助10
4秒前
情怀应助尊敬硬币采纳,获得10
4秒前
李健应助XXk采纳,获得10
5秒前
万能图书馆应助缓慢蜻蜓采纳,获得10
5秒前
膜王完成签到,获得积分10
6秒前
6秒前
LinYX完成签到,获得积分10
6秒前
KEyanba发布了新的文献求助20
7秒前
xiaolu完成签到,获得积分10
7秒前
纯真的伟诚完成签到 ,获得积分10
8秒前
9秒前
CodeCraft应助jzy采纳,获得10
9秒前
9秒前
懒YY捉小J完成签到 ,获得积分10
9秒前
zyc完成签到,获得积分10
10秒前
10秒前
10秒前
崔嘉坤完成签到,获得积分20
10秒前
10秒前
田佳峰发布了新的文献求助10
11秒前
王梦涵发布了新的文献求助10
11秒前
hangongyishan完成签到,获得积分10
13秒前
yiuqiu发布了新的文献求助10
13秒前
sak1uraM发布了新的文献求助10
14秒前
七七发布了新的文献求助10
14秒前
14秒前
aniu发布了新的文献求助10
14秒前
15秒前
15秒前
飞云之下发布了新的文献求助10
15秒前
田佳峰完成签到,获得积分20
15秒前
16秒前
naive应助呆萌的菠萝采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251905
求助须知:如何正确求助?哪些是违规求助? 4415834
关于积分的说明 13747630
捐赠科研通 4287647
什么是DOI,文献DOI怎么找? 2352548
邀请新用户注册赠送积分活动 1349348
关于科研通互助平台的介绍 1308876