POS0928 DEEP LEARNING BASED ASSESSMENT OF SALIVARY GLAND ULTRASONOGRAPHY IMAGES FOR SUPPORTING THE DIAGNOSIS OF PRIMARY SJOGREN’S SYNDROME

医学 唾液腺 超声科 病理 皮肤病科 医学物理学 放射科
作者
Yan Geng,Xiongfeng Zhang,Zhe Zhang
标识
DOI:10.1136/annrheumdis-2023-eular.4614
摘要

Background

Salivary gland ultrasound (SGUS) has proven to be a promising tool for diagnosing primary Sjögren's syndrome (pSS). However, the widespread use of it as standardized diagnostic tools is limited by inter/intra operator variability.

Objectives

The aim of this study was to evaluate the utility of deep learning-based SGUS image assessment in the diagnosis of pSS.

Methods

Between Sep 2021 and Oct 2022, 1133 SGUS images of 137 patients from one center were included in this retrospective study. Among them, 61 patients with 480 images were diagnosed as pSS and 76 patients with 653 images were non-SS. All the SGUS image data were randomly divided into training dataset (50%), validation dataset (20%) and testing dataset (30%). The SGUS automatic classification model was developed by using a deep residual convolutional network architecture (RESNET). The predictive performance was validated by sensitivity, specifcity and area under reciver operating characteristic curve (ROC).

Results

When applying deep learning-based SGUS image assessment, it showed better performance than operator based SGUS score system by improving the specifcity (86.9% vs. 80.1%), while similar sensitivity (59.4% vs. 61.4%). The area under the ROC were comparable between them (0.800 vs 0.775).

Conclusion

Deep learning-based SGUS image assessment maybe an objective and promising tool compared to expert-based scoring of SGUS in the diagnosis of pSS. This may support SGUS as an effective and prospective diagnostic tool to supplement current diagnostic methods.

References

[1]Vukicevic AM, Milic V, Zabotti A, Hocevar A, De Lucia O, Filippou G, Frangi AF, Tzioufas A, De Vita S, Filipovic N. Radiomics-Based Assessment of Primary Sjögren's Syndrome From Salivary Gland Ultrasonography Images. IEEE J Biomed Health Inform. 2020 Mar;24(3):835-843. [2]Vukicevic AM, Radovic M, Zabotti A, Milic V, Hocevar A, Callegher SZ, De Lucia O, De Vita S, Filipovic N. Deep learning segmentation of Primary Sjögren's syndrome affected salivary glands from ultrasonography images. Comput Biol Med. 2021 Feb;129:104154.

Acknowledgements:

NIL.

Disclosure of Interests

None Declared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敲一下叮发布了新的文献求助10
1秒前
2秒前
4秒前
龙虾发票完成签到,获得积分10
4秒前
5秒前
yujie发布了新的文献求助10
5秒前
科研通AI2S应助英勇的电话采纳,获得10
9秒前
多多发布了新的文献求助30
10秒前
10秒前
11秒前
望常桑完成签到 ,获得积分10
12秒前
乐天林完成签到 ,获得积分10
12秒前
14秒前
16秒前
研友_VZG7GZ应助JMao采纳,获得10
16秒前
jingchengke完成签到,获得积分10
17秒前
TOO完成签到 ,获得积分10
17秒前
珍珠奶茶发布了新的文献求助10
17秒前
飞兰完成签到,获得积分20
18秒前
19秒前
20秒前
FashionBoy应助圆圆采纳,获得10
20秒前
bluse033发布了新的文献求助30
21秒前
NPC应助ldgsd采纳,获得30
21秒前
SSSSS完成签到,获得积分20
22秒前
乐哉发布了新的文献求助10
22秒前
22秒前
bathygobius完成签到,获得积分10
23秒前
24秒前
碧蓝紫山发布了新的文献求助10
24秒前
科研牛马发布了新的文献求助10
25秒前
往返自然发布了新的文献求助10
26秒前
28秒前
28秒前
29秒前
29秒前
30秒前
面条完成签到,获得积分10
30秒前
lss发布了新的文献求助10
31秒前
Siney完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155733
求助须知:如何正确求助?哪些是违规求助? 2806988
关于积分的说明 7871273
捐赠科研通 2465265
什么是DOI,文献DOI怎么找? 1312193
科研通“疑难数据库(出版商)”最低求助积分说明 629928
版权声明 601892