POS0928 DEEP LEARNING BASED ASSESSMENT OF SALIVARY GLAND ULTRASONOGRAPHY IMAGES FOR SUPPORTING THE DIAGNOSIS OF PRIMARY SJOGREN’S SYNDROME

医学 唾液腺 超声科 病理 皮肤病科 医学物理学 放射科
作者
Yan Geng,Xiongfeng Zhang,Zhe Zhang
标识
DOI:10.1136/annrheumdis-2023-eular.4614
摘要

Background

Salivary gland ultrasound (SGUS) has proven to be a promising tool for diagnosing primary Sjögren's syndrome (pSS). However, the widespread use of it as standardized diagnostic tools is limited by inter/intra operator variability.

Objectives

The aim of this study was to evaluate the utility of deep learning-based SGUS image assessment in the diagnosis of pSS.

Methods

Between Sep 2021 and Oct 2022, 1133 SGUS images of 137 patients from one center were included in this retrospective study. Among them, 61 patients with 480 images were diagnosed as pSS and 76 patients with 653 images were non-SS. All the SGUS image data were randomly divided into training dataset (50%), validation dataset (20%) and testing dataset (30%). The SGUS automatic classification model was developed by using a deep residual convolutional network architecture (RESNET). The predictive performance was validated by sensitivity, specifcity and area under reciver operating characteristic curve (ROC).

Results

When applying deep learning-based SGUS image assessment, it showed better performance than operator based SGUS score system by improving the specifcity (86.9% vs. 80.1%), while similar sensitivity (59.4% vs. 61.4%). The area under the ROC were comparable between them (0.800 vs 0.775).

Conclusion

Deep learning-based SGUS image assessment maybe an objective and promising tool compared to expert-based scoring of SGUS in the diagnosis of pSS. This may support SGUS as an effective and prospective diagnostic tool to supplement current diagnostic methods.

References

[1]Vukicevic AM, Milic V, Zabotti A, Hocevar A, De Lucia O, Filippou G, Frangi AF, Tzioufas A, De Vita S, Filipovic N. Radiomics-Based Assessment of Primary Sjögren's Syndrome From Salivary Gland Ultrasonography Images. IEEE J Biomed Health Inform. 2020 Mar;24(3):835-843. [2]Vukicevic AM, Radovic M, Zabotti A, Milic V, Hocevar A, Callegher SZ, De Lucia O, De Vita S, Filipovic N. Deep learning segmentation of Primary Sjögren's syndrome affected salivary glands from ultrasonography images. Comput Biol Med. 2021 Feb;129:104154.

Acknowledgements:

NIL.

Disclosure of Interests

None Declared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好学习完成签到,获得积分10
刚刚
轩辕寄风发布了新的文献求助10
刚刚
XX发布了新的文献求助10
刚刚
1秒前
陶醉的又夏完成签到 ,获得积分10
2秒前
2秒前
3秒前
JamesPei应助拾新采纳,获得10
3秒前
十一发布了新的文献求助10
5秒前
5秒前
5秒前
23lk发布了新的文献求助10
5秒前
英姑应助ssw采纳,获得10
7秒前
猪猪hero应助小巧谷波采纳,获得10
7秒前
ding应助搞怪的语薇采纳,获得10
7秒前
8秒前
楠小秾发布了新的文献求助10
8秒前
小蘑菇应助mint采纳,获得10
8秒前
9秒前
9秒前
哈哈哈哈发布了新的文献求助10
10秒前
11秒前
小红完成签到,获得积分10
11秒前
zho发布了新的文献求助10
12秒前
12秒前
12秒前
橙子完成签到,获得积分10
13秒前
13秒前
科目三应助xingsixs采纳,获得10
14秒前
kk发布了新的文献求助10
14秒前
cheng发布了新的文献求助10
15秒前
2113完成签到,获得积分10
15秒前
16秒前
胡博士发布了新的文献求助10
16秒前
17秒前
雪松完成签到,获得积分10
18秒前
zoe完成签到,获得积分10
19秒前
开整吧完成签到,获得积分10
19秒前
herococa应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143