Accurate and efficient machine learning models for predicting hydrogen evolution reaction catalysts based on structural and electronic feature engineering in alloys

合金 计算机科学 空格(标点符号) 材料科学 特征(语言学) 电子结构 催化作用 生物系统 纳米技术 人工智能 计算化学 化学 冶金 有机化学 哲学 生物 操作系统 语言学
作者
Jingzi Zhang,Yue-Lin Wang,Xuyan Zhou,Chengquan Zhong,Ke Zhang,Jiakai Liu,Kailong Hu,Xi Lin
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:15 (26): 11072-11082 被引量:17
标识
DOI:10.1039/d3nr01442h
摘要

Predictive materials design of high-performance alloy electrocatalysts is a grand challenge in hydrogen production via water electrolysis. The vast combinatorial space of element substitutions in alloy electrocatalysts offers a wealth of candidate materials, but presents a significant challenge in terms of experimental and computational exploration of all possible options. Recent scientific and technological developments in machine learning (ML) have offered a new opportunity to accelerate such electrocatalyst materials design. Herein, by incorporating both the electronic and structural properties of alloys, we are able to construct accurate and efficient ML models and predict high-performance alloy catalysts for the hydrogen evolution reaction (HER). We have identified the light gradient boosting (LGB) algorithm as the best-performed method, with an excellent coefficient of determination (R2) value reaching 0.921 and the corresponding root-mean-square error (RMSE) being 0.224 eV. The average marginal contributions of alloy features towards ΔGH* values are estimated to determine the importance of various features during the prediction processes. Our results indicate that both the electronic properties of constituent elements and the structural adsorption site features play the most critical roles in the ΔGH* prediction. Furthermore, 84 potential alloys with |ΔGH*| values less than 0.1 eV are successfully screened out of 2290 candidates selected from the Material Project (MP) database. It is reasonable to expect that the ML models with structural and electronic feature engineering developed in this work would provide new insights in future electrocatalyst developments for the HER and other heterogeneous reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四憙发布了新的文献求助10
刚刚
星星完成签到,获得积分10
刚刚
小崽总完成签到,获得积分10
1秒前
是微微发布了新的文献求助10
1秒前
Joy发布了新的文献求助10
1秒前
kx发布了新的文献求助10
2秒前
桃桃奶盖发布了新的文献求助10
2秒前
化鼠发布了新的文献求助10
2秒前
2秒前
蘸水发布了新的文献求助10
2秒前
洞两发布了新的文献求助10
3秒前
科研通AI5应助坦率的果汁采纳,获得10
3秒前
TongMan发布了新的文献求助10
3秒前
xol完成签到 ,获得积分10
3秒前
星星发布了新的文献求助10
4秒前
4秒前
4秒前
hhhhhh完成签到,获得积分10
5秒前
复杂的方盒完成签到 ,获得积分10
5秒前
5秒前
6秒前
tree完成签到,获得积分10
6秒前
fredfqk完成签到,获得积分10
6秒前
7秒前
今后应助是微微采纳,获得10
7秒前
8秒前
yangon完成签到,获得积分10
9秒前
三木发布了新的文献求助10
9秒前
愉快草莓发布了新的文献求助10
9秒前
yydd发布了新的文献求助20
10秒前
顾矜应助小孟要努力采纳,获得10
10秒前
Ephemerality发布了新的文献求助10
11秒前
11秒前
WW完成签到 ,获得积分10
12秒前
隐形曼青应助Joy采纳,获得10
12秒前
萧诗双完成签到,获得积分10
12秒前
12秒前
愉快草莓完成签到,获得积分10
13秒前
星万能的葡萄关注了科研通微信公众号
13秒前
CodeCraft应助Amory采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199