Accelerated Cardiac MRI Cine with Use of Resolution Enhancement Generative Adversarial Inline Neural Network

医学 深度学习 威尔科克森符号秩检验 人工智能 工件(错误) 图像质量 磁共振成像 心室 核医学 放射科 心脏病学 内科学 计算机科学 图像(数学) 曼惠特尼U检验
作者
Siyeop Yoon,Shiro Nakamori,Amine Amyar,Salah Assana,Julia Cirillo,Manuel A. Morales,Kelvin Chow,Xiaoming Bi,Patrick Pierce,Beth Goddu,Jennifer Rodriguez,Long Ngo,Warren J. Manning,Reza Nezafat
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:14
标识
DOI:10.1148/radiol.222878
摘要

Background Cardiac cine can benefit from deep learning–based image reconstruction to reduce scan time and/or increase spatial and temporal resolution. Purpose To develop and evaluate a deep learning model that can be combined with parallel imaging or compressed sensing (CS). Materials and Methods The deep learning model was built on the enhanced super-resolution generative adversarial inline neural network, trained with use of retrospectively identified cine images and evaluated in participants prospectively enrolled from September 2021 to September 2022. The model was applied to breath-hold electrocardiography (ECG)-gated segmented and free-breathing real-time cine images collected with reduced spatial resolution with use of generalized autocalibrating partially parallel acquisitions (GRAPPA) or CS. The deep learning model subsequently restored spatial resolution. For comparison, GRAPPA-accelerated cine images were collected. Diagnostic quality and artifacts were evaluated by two readers with use of Likert scales and compared with use of Wilcoxon signed-rank tests. Agreement for left ventricle (LV) function, volume, and strain was assessed with Bland-Altman analysis. Results The deep learning model was trained on 1616 patients (mean age ± SD, 56 years ± 16; 920 men) and evaluated in 181 individuals, 126 patients (mean age, 57 years ± 16; 77 men) and 55 healthy subjects (mean age, 27 years ± 10; 15 men). In breath-hold ECG-gated segmented cine and free-breathing real-time cine, the deep learning model and GRAPPA showed similar diagnostic quality scores (2.9 vs 2.9, P = .41, deep learning vs GRAPPA) and artifact score (4.4 vs 4.3, P = .55, deep learning vs GRAPPA). Deep learning acquired more sections per breath-hold than GRAPPA (3.1 vs one section, P < .001). In free-breathing real-time cine, the deep learning showed a similar diagnostic quality score (2.9 vs 2.9, P = .21, deep learning vs GRAPPA) and lower artifact score (3.9 vs 4.3, P < .001, deep learning vs GRAPPA). For both sequences, the deep learning model showed excellent agreement for LV parameters, with near-zero mean differences and narrow limits of agreement compared with GRAPPA. Conclusion Deep learning–accelerated cardiac cine showed similarly accurate quantification of cardiac function, volume, and strain to a standardized parallel imaging method. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Vannier and Wang in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吴ml发布了新的文献求助10
刚刚
热寂灬发布了新的文献求助10
1秒前
威猛先生完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Joyce完成签到,获得积分10
2秒前
sxt关闭了sxt文献求助
2秒前
思源应助淡定从霜采纳,获得10
3秒前
4秒前
5秒前
kira发布了新的文献求助10
5秒前
王权完成签到,获得积分10
6秒前
呆桃wuli夹尼完成签到,获得积分10
6秒前
6秒前
55555555发布了新的文献求助10
6秒前
7秒前
威猛先生发布了新的文献求助10
9秒前
9秒前
ZXW完成签到,获得积分10
10秒前
沉默板凳发布了新的文献求助10
10秒前
10秒前
10秒前
12秒前
丘比特应助fox2采纳,获得10
12秒前
年轻枕头完成签到,获得积分10
13秒前
13秒前
还不错诶完成签到 ,获得积分10
13秒前
Melody完成签到,获得积分10
13秒前
俱乐部应助xinnng采纳,获得10
14秒前
14秒前
zzq完成签到,获得积分20
14秒前
Lucas应助温暖的棒棒糖采纳,获得30
14秒前
王权发布了新的文献求助10
15秒前
了解了l发布了新的文献求助30
15秒前
香蕉觅云应助Mrs.yang采纳,获得10
15秒前
粽子完成签到,获得积分10
16秒前
无妄海发布了新的文献求助10
17秒前
包笑白发布了新的文献求助10
17秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263665
求助须知:如何正确求助?哪些是违规求助? 2903963
关于积分的说明 8327849
捐赠科研通 2573971
什么是DOI,文献DOI怎么找? 1398793
科研通“疑难数据库(出版商)”最低求助积分说明 654350
邀请新用户注册赠送积分活动 632847