兰姆达
哈密顿量(控制论)
正多边形
数学
Dirichlet边界条件
非线性系统
数学分析
哈密顿系统
工作(物理)
边值问题
Dirichlet分布
无穷
山口定理
物理
几何学
量子力学
数学优化
作者
Oscar Mauricio Agudelo,Bernhard Ruf,C.A. Vélez
出处
期刊:Discrete and Continuous Dynamical Systems - Series S
[American Institute of Mathematical Sciences]
日期:2023-01-01
卷期号:16 (11): 2902-2918
标识
DOI:10.3934/dcdss.2023103
摘要
In this work we study a Hamiltonian elliptic system of equations with Dirichlet boundary condition and with non-linearities that are concave near the origin and are convex and superlinear at infinity. The concavity of the non-linearities depends on non-negative parameters $ \lambda $ and $ \mu $ and we provide regions for the pairs $ (\lambda, \mu) $ guaranteeing existence and non-existence of non-negative solutions. This work is inspired by the seminal work for the single equation done by Ambrosetti, Brezis and Cerami in [1].
科研通智能强力驱动
Strongly Powered by AbleSci AI