Sex Estimation From the Paranasal Sinus Volumes Using Semiautomatic Segmentation, Discriminant Analyses, and Machine Learning Algorithms

窦(植物学) 线性判别分析 副鼻窦 分割 性二态性 判别式 判别函数分析 医学 人工智能 机器学习 算法 数学 计算机科学 放射科 生物 内科学 植物
作者
Yavuz Hekimoğlu,Hadi Sasanı,Yasin Etli,Sıddık Keskin,Burak Taştekin,Mahmut Aşırdizer
出处
期刊:American Journal of Forensic Medicine and Pathology [Lippincott Williams & Wilkins]
被引量:3
标识
DOI:10.1097/paf.0000000000000842
摘要

Abstract The aims of this study were to determine whether paranasal sinus volumetric measurements differ according to sex, age group, and right-left side and to determine the rate of sexual dimorphism using discriminant function analysis and machine learning algorithms. The study included paranasal computed tomography images of 100 live individuals of known sex and age. The paranasal sinuses were marked using semiautomatic segmentation and their volumes and densities were measured. Sex determination using discriminant analyses and machine learning algorithms was performed. Males had higher mean volumes of all paranasal sinuses than females ( P < 0.05); however, there were no statistically significant differences between age groups or sides ( P > 0.05). The paranasal sinus volumes of females were more dysmorphic during sex determination. The frontal sinus volume had the highest accuracy, whereas the sphenoid sinus volume was the least dysmorphic. In this study, although there was moderate sexual dimorphism in paranasal sinus volumes, the use of machine learning methods increased the accuracy of sex estimation. We believe that sex estimation rates will be significantly higher in future studies that combine linear measurements, volumetric measurements, and machine-learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wonder123发布了新的文献求助10
刚刚
Rainnnn完成签到,获得积分10
1秒前
1秒前
麦子发布了新的文献求助10
3秒前
秋白完成签到 ,获得积分10
5秒前
wanci应助家伟采纳,获得10
5秒前
7秒前
情怀应助杜兰特采纳,获得20
7秒前
7秒前
bbh发布了新的文献求助30
8秒前
冷静的无颜完成签到,获得积分10
8秒前
Maxine完成签到 ,获得积分10
8秒前
搜集达人应助qls123采纳,获得10
8秒前
禾苗完成签到 ,获得积分10
10秒前
爆米花应助zhq采纳,获得10
11秒前
11秒前
12秒前
Liufgui应助杨桃采纳,获得10
12秒前
14秒前
congenialboy发布了新的文献求助10
14秒前
yar应助易安采纳,获得30
17秒前
17秒前
家伟发布了新的文献求助10
17秒前
Lucas应助怕孤单的破茧采纳,获得10
18秒前
18秒前
wonder123发布了新的文献求助10
18秒前
大猫应助KK采纳,获得10
18秒前
18秒前
20秒前
微笑的语芙完成签到,获得积分10
21秒前
23秒前
灵巧妙柏发布了新的文献求助10
23秒前
CipherSage应助好滴捏采纳,获得10
24秒前
香云完成签到 ,获得积分10
24秒前
25秒前
搜集达人应助艺涵采纳,获得10
26秒前
M_a完成签到,获得积分10
27秒前
mm驳回了华仔应助
27秒前
28秒前
bbh完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176