Evaluation of an AI Model to Assess Future Breast Cancer Risk

医学 乳腺摄影术 乳腺癌 接收机工作特性 置信区间 乳腺癌筛查 导管癌 癌症 回顾性队列研究 观察研究 乳房成像 癌症登记处 妇科 肿瘤科 内科学
作者
Céleste Damiani,Grigorios Kalliatakis,Muthyala Sreenivas,M Al-Attar,Janice Rose,C.J. Pudney,E Lane,Jack Cuzick,Giovanni Montana,Adam R. Brentnall
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:3
标识
DOI:10.1148/radiol.222679
摘要

Background Accurate breast cancer risk assessment after a negative screening result could enable better strategies for early detection. Purpose To evaluate a deep learning algorithm for risk assessment based on digital mammograms. Materials and Methods A retrospective observational matched case-control study was designed using the OPTIMAM Mammography Image Database from the National Health Service Breast Screening Programme in the United Kingdom from February 2010 to September 2019. Patients with breast cancer (cases) were diagnosed following a mammographic screening or between two triannual screening rounds. Controls were matched based on mammography device, screening site, and age. The artificial intelligence (AI) model only used mammograms at screening before diagnosis. The primary objective was to assess model performance, with a secondary objective to assess heterogeneity and calibration slope. The area under the receiver operating characteristic curve (AUC) was estimated for 3-year risk. Heterogeneity according to cancer subtype was assessed using a likelihood ratio interaction test. Statistical significance was set at P < .05. Results Analysis included patients with screen-detected (median age, 60 years [IQR, 55-65 years]; 2044 female, including 1528 with invasive cancer and 503 with ductal carcinoma in situ [DCIS]) or interval (median age, 59 years [IQR, 53-65 years]; 696 female, including 636 with invasive cancer and 54 with DCIS) breast cancer and 1:1 matched controls, each with a complete set of mammograms at the screening preceding diagnosis. The AI model had an overall AUC of 0.68 (95% CI: 0.66, 0.70), with no evidence of a significant difference between interval and screen-detected (AUC, 0.69 vs 0.67; P = .085) cancer. The calibration slope was 1.13 (95% CI: 1.01, 1.26). There was similar performance for the detection of invasive cancer versus DCIS (AUC, 0.68 vs 0.66; P = .057). The model had higher performance for advanced cancer risk (AUC, 0.72 ≥stage II vs 0.66

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃子e发布了新的文献求助10
1秒前
午凌二完成签到,获得积分10
1秒前
2秒前
3秒前
Lychee完成签到 ,获得积分10
4秒前
HMethod完成签到 ,获得积分10
4秒前
小胖发布了新的文献求助10
4秒前
5秒前
SCI66发布了新的文献求助30
5秒前
nessa发布了新的文献求助10
7秒前
爆米花应助CRUISE采纳,获得10
8秒前
木悠发布了新的文献求助10
9秒前
壮观人达完成签到,获得积分10
9秒前
LDoll完成签到,获得积分10
10秒前
桃子e完成签到,获得积分10
10秒前
Lee发布了新的文献求助10
12秒前
13秒前
lt发布了新的文献求助10
14秒前
Lqian_Yu完成签到 ,获得积分10
15秒前
SCI66完成签到,获得积分10
18秒前
小胖发布了新的文献求助10
19秒前
Glufo完成签到,获得积分10
20秒前
英姑应助小慧儿采纳,获得10
21秒前
22秒前
领导范儿应助科研通管家采纳,获得10
23秒前
千千沐发布了新的文献求助10
23秒前
Lee完成签到,获得积分10
23秒前
light发布了新的文献求助50
24秒前
qwer发布了新的文献求助50
25秒前
25秒前
优秀的元龙完成签到,获得积分10
27秒前
30秒前
碧蓝平露发布了新的文献求助10
30秒前
凶狠的飞凤完成签到,获得积分10
31秒前
SBoot完成签到,获得积分10
31秒前
32秒前
HAAAPY完成签到,获得积分20
35秒前
keikei发布了新的文献求助10
36秒前
gxc发布了新的文献求助10
37秒前
mao完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578