Evaluation of an AI Model to Assess Future Breast Cancer Risk

医学 乳腺摄影术 乳腺癌 接收机工作特性 置信区间 乳腺癌筛查 导管癌 癌症 回顾性队列研究 观察研究 乳房成像 癌症登记处 妇科 肿瘤科 内科学
作者
Céleste Damiani,Grigorios Kalliatakis,Muthyala Sreenivas,M Al-Attar,Janice Rose,C.J. Pudney,E Lane,Jack Cuzick,Giovanni Montana,Adam R. Brentnall
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:3
标识
DOI:10.1148/radiol.222679
摘要

Background Accurate breast cancer risk assessment after a negative screening result could enable better strategies for early detection. Purpose To evaluate a deep learning algorithm for risk assessment based on digital mammograms. Materials and Methods A retrospective observational matched case-control study was designed using the OPTIMAM Mammography Image Database from the National Health Service Breast Screening Programme in the United Kingdom from February 2010 to September 2019. Patients with breast cancer (cases) were diagnosed following a mammographic screening or between two triannual screening rounds. Controls were matched based on mammography device, screening site, and age. The artificial intelligence (AI) model only used mammograms at screening before diagnosis. The primary objective was to assess model performance, with a secondary objective to assess heterogeneity and calibration slope. The area under the receiver operating characteristic curve (AUC) was estimated for 3-year risk. Heterogeneity according to cancer subtype was assessed using a likelihood ratio interaction test. Statistical significance was set at P < .05. Results Analysis included patients with screen-detected (median age, 60 years [IQR, 55-65 years]; 2044 female, including 1528 with invasive cancer and 503 with ductal carcinoma in situ [DCIS]) or interval (median age, 59 years [IQR, 53-65 years]; 696 female, including 636 with invasive cancer and 54 with DCIS) breast cancer and 1:1 matched controls, each with a complete set of mammograms at the screening preceding diagnosis. The AI model had an overall AUC of 0.68 (95% CI: 0.66, 0.70), with no evidence of a significant difference between interval and screen-detected (AUC, 0.69 vs 0.67; P = .085) cancer. The calibration slope was 1.13 (95% CI: 1.01, 1.26). There was similar performance for the detection of invasive cancer versus DCIS (AUC, 0.68 vs 0.66; P = .057). The model had higher performance for advanced cancer risk (AUC, 0.72 ≥stage II vs 0.66
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
科研通AI2S应助哆啦猫采纳,获得10
3秒前
CodeCraft应助ada采纳,获得10
6秒前
zhd发布了新的文献求助10
6秒前
滴滴完成签到 ,获得积分10
6秒前
欣欣向荣发布了新的文献求助10
6秒前
温乘云发布了新的文献求助10
6秒前
6秒前
好滴捏发布了新的文献求助10
6秒前
7秒前
lele发布了新的社区帖子
10秒前
10秒前
大憨憨完成签到 ,获得积分10
11秒前
姚开元关注了科研通微信公众号
11秒前
羊村黑恶势力给羊村黑恶势力的求助进行了留言
12秒前
12秒前
13秒前
田様应助温乘云采纳,获得10
13秒前
吃的了细糠的山猪完成签到,获得积分10
14秒前
酷波er应助好滴捏采纳,获得10
15秒前
01发布了新的文献求助10
15秒前
19秒前
19秒前
21秒前
河堤完成签到 ,获得积分10
21秒前
丘比特应助01采纳,获得10
21秒前
LYJ完成签到,获得积分10
23秒前
23秒前
24秒前
25秒前
HYT发布了新的文献求助10
25秒前
25秒前
26秒前
JUSTDOIT完成签到,获得积分10
26秒前
28秒前
Jasper应助哈哈哈哈哈哈采纳,获得10
30秒前
舒心的冷安完成签到,获得积分10
30秒前
共享精神应助13771590815采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710