Evaluation of an AI Model to Assess Future Breast Cancer Risk

医学 乳腺摄影术 乳腺癌 接收机工作特性 置信区间 乳腺癌筛查 导管癌 癌症 回顾性队列研究 观察研究 乳房成像 癌症登记处 妇科 肿瘤科 内科学
作者
Céleste Damiani,Grigorios Kalliatakis,Muthyala Sreenivas,M Al-Attar,Janice Rose,C.J. Pudney,E Lane,Jack Cuzick,Giovanni Montana,Adam R. Brentnall
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:3
标识
DOI:10.1148/radiol.222679
摘要

Background Accurate breast cancer risk assessment after a negative screening result could enable better strategies for early detection. Purpose To evaluate a deep learning algorithm for risk assessment based on digital mammograms. Materials and Methods A retrospective observational matched case-control study was designed using the OPTIMAM Mammography Image Database from the National Health Service Breast Screening Programme in the United Kingdom from February 2010 to September 2019. Patients with breast cancer (cases) were diagnosed following a mammographic screening or between two triannual screening rounds. Controls were matched based on mammography device, screening site, and age. The artificial intelligence (AI) model only used mammograms at screening before diagnosis. The primary objective was to assess model performance, with a secondary objective to assess heterogeneity and calibration slope. The area under the receiver operating characteristic curve (AUC) was estimated for 3-year risk. Heterogeneity according to cancer subtype was assessed using a likelihood ratio interaction test. Statistical significance was set at P < .05. Results Analysis included patients with screen-detected (median age, 60 years [IQR, 55-65 years]; 2044 female, including 1528 with invasive cancer and 503 with ductal carcinoma in situ [DCIS]) or interval (median age, 59 years [IQR, 53-65 years]; 696 female, including 636 with invasive cancer and 54 with DCIS) breast cancer and 1:1 matched controls, each with a complete set of mammograms at the screening preceding diagnosis. The AI model had an overall AUC of 0.68 (95% CI: 0.66, 0.70), with no evidence of a significant difference between interval and screen-detected (AUC, 0.69 vs 0.67; P = .085) cancer. The calibration slope was 1.13 (95% CI: 1.01, 1.26). There was similar performance for the detection of invasive cancer versus DCIS (AUC, 0.68 vs 0.66; P = .057). The model had higher performance for advanced cancer risk (AUC, 0.72 ≥stage II vs 0.66
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小陈老板发布了新的文献求助10
1秒前
2秒前
tian发布了新的文献求助10
2秒前
3秒前
3秒前
爱吃果果的泡泡完成签到,获得积分10
3秒前
4秒前
顺利琦完成签到,获得积分10
4秒前
4秒前
4秒前
zhang值发布了新的文献求助10
4秒前
5秒前
在郑州发布了新的文献求助10
5秒前
6秒前
6秒前
希望天下0贩的0应助雨巷采纳,获得10
6秒前
haha发布了新的文献求助30
7秒前
7秒前
爆米花应助lele采纳,获得10
7秒前
桐桐应助今夜无人入眠采纳,获得10
7秒前
缺粥发布了新的文献求助10
8秒前
wang完成签到,获得积分10
8秒前
9秒前
serendipity发布了新的文献求助30
9秒前
云云完成签到,获得积分10
9秒前
axl发布了新的文献求助10
9秒前
chopin发布了新的文献求助10
10秒前
BOSS徐应助zhang值采纳,获得10
11秒前
weijiechi发布了新的文献求助10
11秒前
笨本呦完成签到 ,获得积分10
11秒前
华仔应助xiuxiuzhang采纳,获得10
11秒前
12秒前
12秒前
rcrc111发布了新的文献求助10
12秒前
蜜桃味大饼完成签到 ,获得积分10
12秒前
烟雨落长川完成签到,获得积分10
13秒前
tim发布了新的文献求助10
13秒前
13秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919