T-GAE: A Timespan-Aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion

计算机科学 嵌入 知识图 图形 编码器 理论计算机科学 基线(sea) 人工智能 海洋学 操作系统 地质学
作者
Xiangning Hou,Ruizhe Ma,Yan Li,Zongmin Ma
出处
期刊:Information Sciences [Elsevier BV]
卷期号:642: 119225-119225
标识
DOI:10.1016/j.ins.2023.119225
摘要

Temporal knowledge graphs (TKGs) often suffer from incompleteness, leading to an important research issue: Temporal Knowledge Graph Completion (TKGC). Knowledge Graph Embedding (KGE) methods have proven to be effective in solving this issue. However, most of them handle triples independently and do not capture complex information embedded in the neighborhood topology of central entities. To this end, we propose a Timespan-aware Graph Attention-based Embedding Model named T-GAE to tackle the TKGC task. To the best of our knowledge, T-GAE is the first KGE model in which Graph-Attention-Networks (GATs) and Long Short-Term Memory (LSTM) Networks are simultaneously applied to the TKGC task. In essence, our model is an Encoder-Decoder architecture, where the encoder consists of an LSTM network and a GAT network. Firstly, we employ LSTM layers to learn new time-aware relational embeddings to incorporate time information. Then, we utilize these time-aware relational embedding and GATs considered as neighborhood aggregators to learn the entity and relational features of the central entity neighborhoods. Thus, T-GAE can capture the interaction features between multi-relational facts and the abundant temporal information in TKGs. As for the decoder, we choose the ConvKB model, which is essentially a scoring function. Our experiments demonstrate that T-GAE significantly outperforms most of the existing baseline methods for TKGC in terms of MRR and [email protected]/3/10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jim_hacker发布了新的文献求助30
1秒前
1秒前
2秒前
曲凯完成签到 ,获得积分10
2秒前
yoyo完成签到,获得积分10
3秒前
友好聋五完成签到,获得积分10
3秒前
沉默傲芙发布了新的文献求助10
4秒前
上官若男应助从容幼南采纳,获得10
4秒前
噜噜噜发布了新的文献求助10
4秒前
5秒前
lan发布了新的文献求助10
6秒前
丘比特应助小猪佩奇采纳,获得10
6秒前
6秒前
完美世界应助许珍妮采纳,获得10
6秒前
子凯完成签到,获得积分10
7秒前
8秒前
研友_8ov14Z完成签到,获得积分10
8秒前
9秒前
小阳发布了新的文献求助10
9秒前
10秒前
噜噜噜完成签到,获得积分10
11秒前
zhangzhang发布了新的文献求助10
12秒前
12秒前
11完成签到,获得积分10
12秒前
杜青完成签到,获得积分10
12秒前
jia完成签到 ,获得积分10
12秒前
14秒前
泉眼发布了新的文献求助10
14秒前
冰红茶完成签到,获得积分10
15秒前
yu001完成签到,获得积分10
16秒前
牡丹皮炭发布了新的文献求助30
17秒前
17秒前
赘婿应助Tina采纳,获得10
17秒前
与一完成签到 ,获得积分10
18秒前
18秒前
19秒前
LQX2141发布了新的文献求助10
19秒前
20秒前
小猪佩奇发布了新的文献求助10
20秒前
SciGPT应助劈里啪啦滴毛毛采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061