T-GAE: A Timespan-Aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion

计算机科学 嵌入 知识图 图形 编码器 理论计算机科学 基线(sea) 人工智能 海洋学 操作系统 地质学
作者
Xiangning Hou,Ruizhe Ma,Yan Li,Zongmin Ma
出处
期刊:Information Sciences [Elsevier]
卷期号:642: 119225-119225
标识
DOI:10.1016/j.ins.2023.119225
摘要

Temporal knowledge graphs (TKGs) often suffer from incompleteness, leading to an important research issue: Temporal Knowledge Graph Completion (TKGC). Knowledge Graph Embedding (KGE) methods have proven to be effective in solving this issue. However, most of them handle triples independently and do not capture complex information embedded in the neighborhood topology of central entities. To this end, we propose a Timespan-aware Graph Attention-based Embedding Model named T-GAE to tackle the TKGC task. To the best of our knowledge, T-GAE is the first KGE model in which Graph-Attention-Networks (GATs) and Long Short-Term Memory (LSTM) Networks are simultaneously applied to the TKGC task. In essence, our model is an Encoder-Decoder architecture, where the encoder consists of an LSTM network and a GAT network. Firstly, we employ LSTM layers to learn new time-aware relational embeddings to incorporate time information. Then, we utilize these time-aware relational embedding and GATs considered as neighborhood aggregators to learn the entity and relational features of the central entity neighborhoods. Thus, T-GAE can capture the interaction features between multi-relational facts and the abundant temporal information in TKGs. As for the decoder, we choose the ConvKB model, which is essentially a scoring function. Our experiments demonstrate that T-GAE significantly outperforms most of the existing baseline methods for TKGC in terms of MRR and [email protected]/3/10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助张三顺采纳,获得10
刚刚
Evan发布了新的文献求助10
刚刚
1秒前
尤其完成签到,获得积分10
3秒前
小温w发布了新的文献求助10
3秒前
5秒前
shishkintree完成签到 ,获得积分10
5秒前
顶刊_发布了新的文献求助10
6秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
小青椒应助科研通管家采纳,获得60
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
8秒前
NiL应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
龅牙苏应助kelly9110采纳,获得10
9秒前
单单来迟完成签到,获得积分10
10秒前
陈好完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
假面绅士发布了新的文献求助10
14秒前
李爱国应助专注月亮采纳,获得10
15秒前
困鼠了发布了新的文献求助10
15秒前
23333完成签到 ,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425184
求助须知:如何正确求助?哪些是违规求助? 4539282
关于积分的说明 14166597
捐赠科研通 4456440
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568