T-GAE: A Timespan-Aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion

计算机科学 嵌入 知识图 图形 编码器 理论计算机科学 基线(sea) 人工智能 海洋学 操作系统 地质学
作者
Xiangning Hou,Ruizhe Ma,Yan Li,Zongmin Ma
出处
期刊:Information Sciences [Elsevier]
卷期号:642: 119225-119225
标识
DOI:10.1016/j.ins.2023.119225
摘要

Temporal knowledge graphs (TKGs) often suffer from incompleteness, leading to an important research issue: Temporal Knowledge Graph Completion (TKGC). Knowledge Graph Embedding (KGE) methods have proven to be effective in solving this issue. However, most of them handle triples independently and do not capture complex information embedded in the neighborhood topology of central entities. To this end, we propose a Timespan-aware Graph Attention-based Embedding Model named T-GAE to tackle the TKGC task. To the best of our knowledge, T-GAE is the first KGE model in which Graph-Attention-Networks (GATs) and Long Short-Term Memory (LSTM) Networks are simultaneously applied to the TKGC task. In essence, our model is an Encoder-Decoder architecture, where the encoder consists of an LSTM network and a GAT network. Firstly, we employ LSTM layers to learn new time-aware relational embeddings to incorporate time information. Then, we utilize these time-aware relational embedding and GATs considered as neighborhood aggregators to learn the entity and relational features of the central entity neighborhoods. Thus, T-GAE can capture the interaction features between multi-relational facts and the abundant temporal information in TKGs. As for the decoder, we choose the ConvKB model, which is essentially a scoring function. Our experiments demonstrate that T-GAE significantly outperforms most of the existing baseline methods for TKGC in terms of MRR and [email protected]/3/10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰灰完成签到,获得积分10
2秒前
nkmenghan完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
5秒前
5秒前
老田发布了新的文献求助30
5秒前
霜之哀伤发布了新的文献求助10
5秒前
琪琪发布了新的文献求助10
6秒前
原子界完成签到,获得积分10
6秒前
6秒前
jin完成签到,获得积分10
6秒前
6秒前
fj发布了新的文献求助10
7秒前
浮游应助李木子采纳,获得10
7秒前
7秒前
7秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
杜志洪发布了新的文献求助10
8秒前
打打应助科研通管家采纳,获得10
8秒前
程希发布了新的文献求助10
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
朋克完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
sincerely发布了新的文献求助10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得30
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
Hello应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
QOP应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352537
求助须知:如何正确求助?哪些是违规求助? 4485363
关于积分的说明 13962944
捐赠科研通 4385316
什么是DOI,文献DOI怎么找? 2409378
邀请新用户注册赠送积分活动 1401795
关于科研通互助平台的介绍 1375406