T-GAE: A Timespan-Aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion

计算机科学 嵌入 知识图 图形 编码器 理论计算机科学 基线(sea) 人工智能 海洋学 操作系统 地质学
作者
Xiangning Hou,Ruizhe Ma,Yan Li,Zongmin Ma
出处
期刊:Information Sciences [Elsevier BV]
卷期号:642: 119225-119225
标识
DOI:10.1016/j.ins.2023.119225
摘要

Temporal knowledge graphs (TKGs) often suffer from incompleteness, leading to an important research issue: Temporal Knowledge Graph Completion (TKGC). Knowledge Graph Embedding (KGE) methods have proven to be effective in solving this issue. However, most of them handle triples independently and do not capture complex information embedded in the neighborhood topology of central entities. To this end, we propose a Timespan-aware Graph Attention-based Embedding Model named T-GAE to tackle the TKGC task. To the best of our knowledge, T-GAE is the first KGE model in which Graph-Attention-Networks (GATs) and Long Short-Term Memory (LSTM) Networks are simultaneously applied to the TKGC task. In essence, our model is an Encoder-Decoder architecture, where the encoder consists of an LSTM network and a GAT network. Firstly, we employ LSTM layers to learn new time-aware relational embeddings to incorporate time information. Then, we utilize these time-aware relational embedding and GATs considered as neighborhood aggregators to learn the entity and relational features of the central entity neighborhoods. Thus, T-GAE can capture the interaction features between multi-relational facts and the abundant temporal information in TKGs. As for the decoder, we choose the ConvKB model, which is essentially a scoring function. Our experiments demonstrate that T-GAE significantly outperforms most of the existing baseline methods for TKGC in terms of MRR and [email protected]/3/10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
2秒前
云之上发布了新的文献求助10
3秒前
感动的寒风完成签到,获得积分20
4秒前
浮游应助siyanghe采纳,获得10
4秒前
kc完成签到,获得积分10
5秒前
落后访风99完成签到,获得积分10
5秒前
小杭76应助Maple采纳,获得10
6秒前
GB发布了新的文献求助10
6秒前
科研通AI6应助wyfyq采纳,获得10
6秒前
孤蚀月发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
Ava应助Anna采纳,获得10
8秒前
Song发布了新的文献求助10
9秒前
9秒前
可耐的乌发布了新的文献求助10
9秒前
9秒前
juzitinghai完成签到,获得积分10
9秒前
10秒前
亚迪发布了新的文献求助10
10秒前
li完成签到,获得积分10
10秒前
11秒前
11秒前
duyu发布了新的文献求助10
12秒前
闲听花落发布了新的文献求助10
12秒前
12秒前
暗月皇发布了新的文献求助10
13秒前
李健应助Michelle采纳,获得10
13秒前
13秒前
不入当归完成签到,获得积分10
14秒前
15秒前
糕糕发布了新的文献求助10
15秒前
15秒前
16秒前
单薄白薇发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4875915
求助须知:如何正确求助?哪些是违规求助? 4164606
关于积分的说明 12918553
捐赠科研通 3922078
什么是DOI,文献DOI怎么找? 2153136
邀请新用户注册赠送积分活动 1171234
关于科研通互助平台的介绍 1075048