T-GAE: A Timespan-Aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion

计算机科学 嵌入 知识图 图形 编码器 理论计算机科学 基线(sea) 人工智能 海洋学 操作系统 地质学
作者
Xiangning Hou,Ruizhe Ma,Yan Li,Zongmin Ma
出处
期刊:Information Sciences [Elsevier BV]
卷期号:642: 119225-119225
标识
DOI:10.1016/j.ins.2023.119225
摘要

Temporal knowledge graphs (TKGs) often suffer from incompleteness, leading to an important research issue: Temporal Knowledge Graph Completion (TKGC). Knowledge Graph Embedding (KGE) methods have proven to be effective in solving this issue. However, most of them handle triples independently and do not capture complex information embedded in the neighborhood topology of central entities. To this end, we propose a Timespan-aware Graph Attention-based Embedding Model named T-GAE to tackle the TKGC task. To the best of our knowledge, T-GAE is the first KGE model in which Graph-Attention-Networks (GATs) and Long Short-Term Memory (LSTM) Networks are simultaneously applied to the TKGC task. In essence, our model is an Encoder-Decoder architecture, where the encoder consists of an LSTM network and a GAT network. Firstly, we employ LSTM layers to learn new time-aware relational embeddings to incorporate time information. Then, we utilize these time-aware relational embedding and GATs considered as neighborhood aggregators to learn the entity and relational features of the central entity neighborhoods. Thus, T-GAE can capture the interaction features between multi-relational facts and the abundant temporal information in TKGs. As for the decoder, we choose the ConvKB model, which is essentially a scoring function. Our experiments demonstrate that T-GAE significantly outperforms most of the existing baseline methods for TKGC in terms of MRR and [email protected]/3/10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弱水应助饿哭了塞采纳,获得10
刚刚
Derik发布了新的文献求助10
刚刚
弱水应助饿哭了塞采纳,获得10
刚刚
完美世界应助桃妹采纳,获得10
刚刚
dew应助饿哭了塞采纳,获得10
1秒前
dew应助饿哭了塞采纳,获得10
1秒前
changping应助大胆灵竹采纳,获得10
1秒前
从容的代真应助饿哭了塞采纳,获得10
1秒前
勤劳的炼金师完成签到,获得积分10
2秒前
李白完成签到,获得积分10
2秒前
梦想发布了新的文献求助50
2秒前
2秒前
冷空气发布了新的文献求助10
2秒前
3秒前
zzx完成签到 ,获得积分20
3秒前
爆米花应助星星的梦采纳,获得10
3秒前
李健的粉丝团团长应助yhh采纳,获得10
3秒前
任ren完成签到,获得积分20
4秒前
画风湖湘卷完成签到 ,获得积分10
5秒前
dd发布了新的文献求助10
5秒前
6秒前
6秒前
lyyyy发布了新的文献求助10
6秒前
浮游应助有魅力的寄琴采纳,获得10
6秒前
CASLSD完成签到 ,获得积分10
6秒前
Karlie完成签到,获得积分10
7秒前
天天快乐应助一区哥采纳,获得10
8秒前
搜集达人应助顾年采纳,获得10
8秒前
屈屈完成签到,获得积分10
9秒前
zyb完成签到,获得积分10
9秒前
XIAJIN完成签到,获得积分10
9秒前
领导范儿应助阳阳采纳,获得10
9秒前
你坤叔公发布了新的文献求助10
10秒前
10秒前
渡月桥完成签到,获得积分10
11秒前
情怀应助ZhouYW采纳,获得10
11秒前
11秒前
李爱国应助宓珧采纳,获得10
11秒前
12秒前
ZZZ发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193830
求助须知:如何正确求助?哪些是违规求助? 4376175
关于积分的说明 13628611
捐赠科研通 4231092
什么是DOI,文献DOI怎么找? 2320710
邀请新用户注册赠送积分活动 1319080
关于科研通互助平台的介绍 1269416