Performance Optimization Engineering of Multicomponent Absorbing Materials Based on Machine Learning

材料科学 机械工程 工艺工程 计算机科学 纳米技术 人工智能 工程类
作者
Yuhao Liu,Xiaoxiao Huang,Xu Yan,Tao Zhang,Jiahao Sun,Yanan Liu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (22): 27056-27064 被引量:4
标识
DOI:10.1021/acsami.3c02794
摘要

Multicomponent materials are microwave-absorbing (MA) materials composed of a variety of absorbents that are capable of reaching the property inaccessible for a single component. Discovering mostly valuable properties, however, often relies on semi-experience, as conventional multicomponent MA materials' design rules alone often fail in high-dimensional design spaces. Therefore, we propose performance optimization engineering to accelerate the design of multicomponent MA materials with desired performance in a practically infinite design space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with the expanded Maxwell-Garnett model, electromagnetic calculations, and experimental feedback; aiming at different desired performances, Ni surface@carbon fiber (NiF) materials and NiF-based multicomponent (NMC) materials with target MA performance were screened and identified out of nearly infinite possible designs. The designed NiF and NMC fulfilled the requirements for the X- and Ku-bands at thicknesses of only 2.0 and 1.78 mm, respectively. In addition, the targets regarding S, C, and all bands (2.0-18.0 GHz) were also achieved as expected. This performance optimization engineering opens up a unique and effective way to design microwave-absorbing materials for practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱奇异果完成签到 ,获得积分10
1秒前
打打应助闾丘惜萱采纳,获得10
1秒前
alan发布了新的文献求助10
2秒前
乐观的乐驹完成签到,获得积分10
2秒前
orixero应助落后夜春采纳,获得30
2秒前
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
可爱航发布了新的文献求助10
6秒前
爱笑花卷完成签到 ,获得积分10
6秒前
8秒前
打打应助hayk采纳,获得10
8秒前
SciGPT应助孙梦涵采纳,获得10
8秒前
9秒前
9秒前
9秒前
Jasper应助guomn采纳,获得10
9秒前
皇室旺关注了科研通微信公众号
9秒前
10秒前
大个应助土豆泥拉拉采纳,获得10
12秒前
自由的语蝶完成签到,获得积分10
12秒前
乐橙发布了新的文献求助10
13秒前
闾丘惜萱发布了新的文献求助10
14秒前
Moon发布了新的文献求助10
16秒前
至乐无乐发布了新的文献求助10
17秒前
xvxsdg发布了新的文献求助10
17秒前
乐橙完成签到,获得积分10
18秒前
皮皮敏完成签到,获得积分20
20秒前
哥哥喜欢格格完成签到,获得积分10
21秒前
yuchen完成签到,获得积分10
21秒前
义气平蓝完成签到,获得积分20
21秒前
22秒前
体贴花卷完成签到,获得积分20
22秒前
22秒前
22秒前
没有逗应助甘乐采纳,获得10
23秒前
skychen完成签到,获得积分20
24秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138292
求助须知:如何正确求助?哪些是违规求助? 2789301
关于积分的说明 7790796
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625971
版权声明 601065