An efficient discrete rat swarm optimizer for global optimization and feature selection in chemoinformatics

计算机科学 支持向量机 特征选择 元启发式 趋同(经济学) 人工智能 遗传算法 特征(语言学) 选择(遗传算法) 算法 机器学习 数学优化 模式识别(心理学) 数据挖掘 数学 哲学 经济增长 经济 语言学
作者
Essam H. Houssein,Mosa E. Hosney,Diego Oliva,Eman M.G. Younis,Abdelmgeid A. Ali,Waleed M. Mohamed
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:275: 110697-110697
标识
DOI:10.1016/j.knosys.2023.110697
摘要

Machine learning algorithms need feature selection (FS) as a significant step toward filtering unnecessary data. This paper proposes a wrapper FS approach that combines the rat swarm optimization (RSO) algorithm with genetic operators to avoid local optimal. In the proposed approach the transfer functions (TFs) are added to balance local and global search by converting a continuous search space into a discrete space. Eight variants of the bmRSO algorithm were applied for classification purposes using a support vector machine (SVM) to increase accuracy and decrease the number of features over several chemical datasets. The eight bmRSO proposed methods and the original RSO were evaluated using the CEC’20 test suite and twelve datasets (eight chemical and four toxicity effect datasets) to verify their performance in complex optimization problems and FS over real datasets, respectively. Moreover, the binary versions of other stable metaheuristic algorithms such as Harris Hawks Optimization (HHO), Grey Wolf Optimization (GWO), Farmland Fertility Algorithm (FFA), Artificial Gorilla Troops Optimizer (GTO), African Vultures Optimization Algorithm (AVOA), Runge Kutta Optimizer’s (RUN), and Slime Mould Algorithm (SMA) were used to compare the results obtained by the best variant of the bmRSO. Eventually, the experimental results have revealed that in most of the tests, the proposed bmRSO1 has achieved efficient search results with higher convergence speeds without increasing additional computational efforts. From the twelve datasets, the MAO dataset reached the highest results compared with other datasets, so the proposed method, bmRSO1-SVM, achieved an accuracy of 98.201% and a 20.001 number of selected features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kuku完成签到,获得积分10
1秒前
2秒前
大胖小子完成签到,获得积分10
3秒前
renmeitao66_3完成签到 ,获得积分10
3秒前
ashida发布了新的文献求助10
3秒前
曾曾发布了新的文献求助20
4秒前
科研通AI2S应助VDC采纳,获得10
4秒前
福福发布了新的文献求助10
5秒前
妩媚的强炫完成签到,获得积分10
7秒前
lll发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助淘气科研采纳,获得10
8秒前
樊忘幽发布了新的文献求助10
10秒前
10秒前
Vivian完成签到,获得积分10
12秒前
王小姐不吃药完成签到 ,获得积分10
13秒前
哈哈环完成签到 ,获得积分10
13秒前
英姑应助落寞的小蚂蚁采纳,获得10
14秒前
14秒前
小白发布了新的文献求助10
14秒前
隐形曼青应助yshhhhhhhh采纳,获得10
15秒前
15秒前
15秒前
666完成签到,获得积分10
16秒前
17秒前
lll完成签到,获得积分20
17秒前
Hyy发布了新的文献求助10
17秒前
17秒前
搜第一完成签到,获得积分10
18秒前
dfj发布了新的文献求助30
20秒前
Somnolence咩发布了新的文献求助10
21秒前
xiaojian_291发布了新的文献求助10
21秒前
海人完成签到 ,获得积分10
21秒前
66完成签到 ,获得积分10
22秒前
22秒前
23秒前
23秒前
peekaboo完成签到,获得积分10
23秒前
手打鱼丸完成签到 ,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296