An efficient discrete rat swarm optimizer for global optimization and feature selection in chemoinformatics

计算机科学 支持向量机 特征选择 元启发式 趋同(经济学) 人工智能 遗传算法 特征(语言学) 选择(遗传算法) 算法 机器学习 数学优化 模式识别(心理学) 数据挖掘 数学 哲学 经济增长 经济 语言学
作者
Essam H. Houssein,Mosa E. Hosney,Diego Oliva,Eman M.G. Younis,Abdelmgeid A. Ali,Waleed M. Mohamed
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:275: 110697-110697
标识
DOI:10.1016/j.knosys.2023.110697
摘要

Machine learning algorithms need feature selection (FS) as a significant step toward filtering unnecessary data. This paper proposes a wrapper FS approach that combines the rat swarm optimization (RSO) algorithm with genetic operators to avoid local optimal. In the proposed approach the transfer functions (TFs) are added to balance local and global search by converting a continuous search space into a discrete space. Eight variants of the bmRSO algorithm were applied for classification purposes using a support vector machine (SVM) to increase accuracy and decrease the number of features over several chemical datasets. The eight bmRSO proposed methods and the original RSO were evaluated using the CEC’20 test suite and twelve datasets (eight chemical and four toxicity effect datasets) to verify their performance in complex optimization problems and FS over real datasets, respectively. Moreover, the binary versions of other stable metaheuristic algorithms such as Harris Hawks Optimization (HHO), Grey Wolf Optimization (GWO), Farmland Fertility Algorithm (FFA), Artificial Gorilla Troops Optimizer (GTO), African Vultures Optimization Algorithm (AVOA), Runge Kutta Optimizer’s (RUN), and Slime Mould Algorithm (SMA) were used to compare the results obtained by the best variant of the bmRSO. Eventually, the experimental results have revealed that in most of the tests, the proposed bmRSO1 has achieved efficient search results with higher convergence speeds without increasing additional computational efforts. From the twelve datasets, the MAO dataset reached the highest results compared with other datasets, so the proposed method, bmRSO1-SVM, achieved an accuracy of 98.201% and a 20.001 number of selected features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FU发布了新的文献求助10
刚刚
十三完成签到,获得积分10
2秒前
3秒前
3秒前
火山完成签到,获得积分10
4秒前
淡定的不言完成签到 ,获得积分10
4秒前
CipherSage应助HHHHHN采纳,获得10
5秒前
科研通AI6应助Moonber采纳,获得10
5秒前
Sch完成签到,获得积分10
6秒前
ding应助端庄代荷采纳,获得10
8秒前
8秒前
9秒前
bkagyin应助sian采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
GangWu完成签到,获得积分10
12秒前
yuqinghui98发布了新的文献求助10
14秒前
科研通AI6应助qiang采纳,获得10
14秒前
15秒前
HMH0223发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
17秒前
yr完成签到,获得积分10
19秒前
19秒前
小小怪发布了新的文献求助10
19秒前
浮游应助九方采纳,获得10
20秒前
21秒前
luxia完成签到 ,获得积分10
21秒前
21秒前
嘉悦发布了新的文献求助10
22秒前
22秒前
闪闪小小完成签到 ,获得积分10
23秒前
23秒前
HHHHHN发布了新的文献求助10
23秒前
6a发布了新的文献求助10
24秒前
万能图书馆应助yr采纳,获得10
24秒前
LLL发布了新的文献求助30
24秒前
缥缈的大神完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421862
求助须知:如何正确求助?哪些是违规求助? 4536861
关于积分的说明 14155275
捐赠科研通 4453423
什么是DOI,文献DOI怎么找? 2442864
邀请新用户注册赠送积分活动 1434254
关于科研通互助平台的介绍 1411370