An efficient discrete rat swarm optimizer for global optimization and feature selection in chemoinformatics

计算机科学 支持向量机 特征选择 元启发式 趋同(经济学) 人工智能 遗传算法 特征(语言学) 选择(遗传算法) 算法 机器学习 数学优化 模式识别(心理学) 数据挖掘 数学 哲学 经济增长 经济 语言学
作者
Essam H. Houssein,Mosa E. Hosney,Diego Oliva,Eman M.G. Younis,Abdelmgeid A. Ali,Waleed M. Mohamed
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:275: 110697-110697
标识
DOI:10.1016/j.knosys.2023.110697
摘要

Machine learning algorithms need feature selection (FS) as a significant step toward filtering unnecessary data. This paper proposes a wrapper FS approach that combines the rat swarm optimization (RSO) algorithm with genetic operators to avoid local optimal. In the proposed approach the transfer functions (TFs) are added to balance local and global search by converting a continuous search space into a discrete space. Eight variants of the bmRSO algorithm were applied for classification purposes using a support vector machine (SVM) to increase accuracy and decrease the number of features over several chemical datasets. The eight bmRSO proposed methods and the original RSO were evaluated using the CEC’20 test suite and twelve datasets (eight chemical and four toxicity effect datasets) to verify their performance in complex optimization problems and FS over real datasets, respectively. Moreover, the binary versions of other stable metaheuristic algorithms such as Harris Hawks Optimization (HHO), Grey Wolf Optimization (GWO), Farmland Fertility Algorithm (FFA), Artificial Gorilla Troops Optimizer (GTO), African Vultures Optimization Algorithm (AVOA), Runge Kutta Optimizer’s (RUN), and Slime Mould Algorithm (SMA) were used to compare the results obtained by the best variant of the bmRSO. Eventually, the experimental results have revealed that in most of the tests, the proposed bmRSO1 has achieved efficient search results with higher convergence speeds without increasing additional computational efforts. From the twelve datasets, the MAO dataset reached the highest results compared with other datasets, so the proposed method, bmRSO1-SVM, achieved an accuracy of 98.201% and a 20.001 number of selected features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺雪完成签到,获得积分10
1秒前
1秒前
玉yu发布了新的文献求助10
2秒前
深情秋刀鱼完成签到,获得积分10
2秒前
星辰大海应助冷酷尔琴采纳,获得10
2秒前
2秒前
2秒前
隐形的大有完成签到,获得积分10
3秒前
浩浩大人发布了新的文献求助10
3秒前
buno应助圈圈采纳,获得10
3秒前
4秒前
隐形曼青应助Bo采纳,获得10
4秒前
西宁阿应助啵乐乐采纳,获得10
4秒前
4秒前
阿仔爱学习完成签到,获得积分10
4秒前
为喵驾车的月亮完成签到,获得积分20
5秒前
5秒前
membrane应助Mon_zh采纳,获得20
5秒前
6秒前
6秒前
hhy发布了新的文献求助10
6秒前
故意的傲玉应助结实煎饼采纳,获得200
7秒前
乐观的一一完成签到,获得积分10
7秒前
zwzw1314完成签到,获得积分10
7秒前
001发布了新的文献求助10
8秒前
FFFFFFF应助平淡南霜采纳,获得10
8秒前
Mottri发布了新的文献求助10
8秒前
9秒前
yangyang发布了新的文献求助10
9秒前
冷酷尔琴完成签到,获得积分10
9秒前
科研通AI5应助aaaaaa采纳,获得10
9秒前
顾矜应助清脆的台灯采纳,获得10
10秒前
单薄凌蝶发布了新的文献求助50
10秒前
10秒前
羊羊爱吃羊羊完成签到 ,获得积分10
11秒前
11秒前
Akim应助BOSSJING采纳,获得10
11秒前
纸上彩虹发布了新的文献求助10
12秒前
volzzz完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740