An efficient discrete rat swarm optimizer for global optimization and feature selection in chemoinformatics

计算机科学 支持向量机 特征选择 元启发式 趋同(经济学) 人工智能 遗传算法 特征(语言学) 选择(遗传算法) 算法 机器学习 数学优化 模式识别(心理学) 数据挖掘 数学 哲学 经济增长 经济 语言学
作者
Essam H. Houssein,Mosa E. Hosney,Diego Oliva,Eman M.G. Younis,Abdelmgeid A. Ali,Waleed M. Mohamed
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:275: 110697-110697
标识
DOI:10.1016/j.knosys.2023.110697
摘要

Machine learning algorithms need feature selection (FS) as a significant step toward filtering unnecessary data. This paper proposes a wrapper FS approach that combines the rat swarm optimization (RSO) algorithm with genetic operators to avoid local optimal. In the proposed approach the transfer functions (TFs) are added to balance local and global search by converting a continuous search space into a discrete space. Eight variants of the bmRSO algorithm were applied for classification purposes using a support vector machine (SVM) to increase accuracy and decrease the number of features over several chemical datasets. The eight bmRSO proposed methods and the original RSO were evaluated using the CEC’20 test suite and twelve datasets (eight chemical and four toxicity effect datasets) to verify their performance in complex optimization problems and FS over real datasets, respectively. Moreover, the binary versions of other stable metaheuristic algorithms such as Harris Hawks Optimization (HHO), Grey Wolf Optimization (GWO), Farmland Fertility Algorithm (FFA), Artificial Gorilla Troops Optimizer (GTO), African Vultures Optimization Algorithm (AVOA), Runge Kutta Optimizer’s (RUN), and Slime Mould Algorithm (SMA) were used to compare the results obtained by the best variant of the bmRSO. Eventually, the experimental results have revealed that in most of the tests, the proposed bmRSO1 has achieved efficient search results with higher convergence speeds without increasing additional computational efforts. From the twelve datasets, the MAO dataset reached the highest results compared with other datasets, so the proposed method, bmRSO1-SVM, achieved an accuracy of 98.201% and a 20.001 number of selected features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦二完成签到 ,获得积分10
刚刚
1秒前
1秒前
爱吃蜂蜜发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
Wonderland完成签到,获得积分10
3秒前
3秒前
余繁发布了新的文献求助10
3秒前
3秒前
失眠的汽车完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
Abraham发布了新的文献求助10
4秒前
jingyuemingqiu完成签到 ,获得积分10
4秒前
冬冬天赖完成签到,获得积分10
5秒前
霹雳侠发布了新的文献求助10
5秒前
科研通AI6应助文乐采纳,获得10
5秒前
冷静烨霖完成签到,获得积分10
6秒前
泡泡发布了新的文献求助50
6秒前
狐狐完成签到,获得积分10
6秒前
tujamo完成签到,获得积分10
6秒前
Sea_U应助dudu采纳,获得10
6秒前
852应助tejing1158采纳,获得10
6秒前
大神装完成签到,获得积分10
6秒前
Hello应助米斯特江江江江采纳,获得10
7秒前
李爱国应助落后的秋荷采纳,获得10
7秒前
安白完成签到,获得积分10
7秒前
ComeOn发布了新的文献求助10
7秒前
打打应助顾文采纳,获得10
7秒前
小蘑菇应助lyy采纳,获得10
8秒前
涨涨发布了新的文献求助10
8秒前
8秒前
科研通AI6应助ark861023采纳,获得10
9秒前
罗马完成签到,获得积分10
9秒前
10秒前
VelesAlexei完成签到,获得积分10
10秒前
核桃发布了新的文献求助10
10秒前
冷静烨霖发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665315
求助须知:如何正确求助?哪些是违规求助? 4875879
关于积分的说明 15112944
捐赠科研通 4824400
什么是DOI,文献DOI怎么找? 2582734
邀请新用户注册赠送积分活动 1536689
关于科研通互助平台的介绍 1495315