亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models

计算机科学 生成语法 分歧(语言学) 人工智能 生成模型 机器学习 扩散 可微函数 数学 数学分析 哲学 语言学 物理 热力学
作者
Weijian Luo,Tianyang Hu,Shifeng Zhang,Jiacheng Sun,Zhenguo Li,Zhihua Zhang
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2305.18455
摘要

Due to the ease of training, ability to scale, and high sample quality, diffusion models (DMs) have become the preferred option for generative modeling, with numerous pre-trained models available for a wide variety of datasets. Containing intricate information about data distributions, pre-trained DMs are valuable assets for downstream applications. In this work, we consider learning from pre-trained DMs and transferring their knowledge to other generative models in a data-free fashion. Specifically, we propose a general framework called Diff-Instruct to instruct the training of arbitrary generative models as long as the generated samples are differentiable with respect to the model parameters. Our proposed Diff-Instruct is built on a rigorous mathematical foundation where the instruction process directly corresponds to minimizing a novel divergence we call Integral Kullback-Leibler (IKL) divergence. IKL is tailored for DMs by calculating the integral of the KL divergence along a diffusion process, which we show to be more robust in comparing distributions with misaligned supports. We also reveal non-trivial connections of our method to existing works such as DreamFusion, and generative adversarial training. To demonstrate the effectiveness and universality of Diff-Instruct, we consider two scenarios: distilling pre-trained diffusion models and refining existing GAN models. The experiments on distilling pre-trained diffusion models show that Diff-Instruct results in state-of-the-art single-step diffusion-based models. The experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models across various settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
11秒前
16秒前
Orange应助落后的怀柔采纳,获得10
17秒前
淡定成风完成签到,获得积分10
42秒前
44秒前
结实智宸完成签到,获得积分10
47秒前
我是老大应助2hi采纳,获得10
56秒前
yipmyonphu完成签到,获得积分10
1分钟前
1分钟前
活泼菠萝发布了新的文献求助10
1分钟前
你看起来很好吃完成签到,获得积分10
1分钟前
活泼菠萝完成签到,获得积分10
1分钟前
Demi_Ming发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Chonger发布了新的文献求助10
1分钟前
2hi发布了新的文献求助10
1分钟前
英姑应助酷炫的不二采纳,获得10
1分钟前
领导范儿应助Chonger采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得150
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
2hi完成签到,获得积分10
2分钟前
2分钟前
Chonger发布了新的文献求助10
2分钟前
bkagyin应助Chonger采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
酷炫的不二完成签到,获得积分10
3分钟前
3分钟前
落后的怀柔完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Chonger发布了新的文献求助10
3分钟前
李健的小迷弟应助Chonger采纳,获得10
3分钟前
Hiraeth完成签到 ,获得积分10
4分钟前
mayhem完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900708
求助须知:如何正确求助?哪些是违规求助? 4180475
关于积分的说明 12976895
捐赠科研通 3945237
什么是DOI,文献DOI怎么找? 2164010
邀请新用户注册赠送积分活动 1182284
关于科研通互助平台的介绍 1088508