Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models

计算机科学 生成语法 分歧(语言学) 人工智能 生成模型 机器学习 扩散 可微函数 数学 语言学 热力学 物理 数学分析 哲学
作者
Weijian Luo,Tianyang Hu,Shifeng Zhang,Jiacheng Sun,Zhenguo Li,Zhihua Zhang
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2305.18455
摘要

Due to the ease of training, ability to scale, and high sample quality, diffusion models (DMs) have become the preferred option for generative modeling, with numerous pre-trained models available for a wide variety of datasets. Containing intricate information about data distributions, pre-trained DMs are valuable assets for downstream applications. In this work, we consider learning from pre-trained DMs and transferring their knowledge to other generative models in a data-free fashion. Specifically, we propose a general framework called Diff-Instruct to instruct the training of arbitrary generative models as long as the generated samples are differentiable with respect to the model parameters. Our proposed Diff-Instruct is built on a rigorous mathematical foundation where the instruction process directly corresponds to minimizing a novel divergence we call Integral Kullback-Leibler (IKL) divergence. IKL is tailored for DMs by calculating the integral of the KL divergence along a diffusion process, which we show to be more robust in comparing distributions with misaligned supports. We also reveal non-trivial connections of our method to existing works such as DreamFusion, and generative adversarial training. To demonstrate the effectiveness and universality of Diff-Instruct, we consider two scenarios: distilling pre-trained diffusion models and refining existing GAN models. The experiments on distilling pre-trained diffusion models show that Diff-Instruct results in state-of-the-art single-step diffusion-based models. The experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models across various settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张呢好发布了新的文献求助10
刚刚
1秒前
Jasper应助药药55采纳,获得10
2秒前
2秒前
荀连虎完成签到 ,获得积分10
2秒前
2秒前
科研通AI6应助研友_LaOJNZ采纳,获得10
2秒前
尹秀兵发布了新的文献求助10
2秒前
卢西完成签到,获得积分10
3秒前
会鹅鹅鹅的鹅完成签到,获得积分10
3秒前
自然的衫发布了新的文献求助80
3秒前
4秒前
5秒前
Lucas应助小魏采纳,获得10
5秒前
衡阳雁完成签到,获得积分10
5秒前
ding应助孤独的蚂蚁采纳,获得10
5秒前
新嘟发布了新的文献求助10
5秒前
李爱国应助陈杨乐采纳,获得10
6秒前
6秒前
6秒前
Hzz完成签到,获得积分10
7秒前
希望天下0贩的0应助wzc采纳,获得10
7秒前
无极微光应助YJY采纳,获得20
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
itharmony应助默问采纳,获得10
9秒前
陈陈陈皮完成签到,获得积分10
9秒前
飞舞的青鱼完成签到,获得积分10
9秒前
英俊的铭应助平淡映易采纳,获得10
10秒前
大个应助FANCY采纳,获得10
10秒前
李江涛发布了新的文献求助10
10秒前
孤独的夏青完成签到,获得积分10
10秒前
123123完成签到,获得积分10
11秒前
高斯发布了新的文献求助10
11秒前
无花果应助王碱采纳,获得10
11秒前
鲤鱼翼完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618939
求助须知:如何正确求助?哪些是违规求助? 4703867
关于积分的说明 14924179
捐赠科研通 4758786
什么是DOI,文献DOI怎么找? 2550320
邀请新用户注册赠送积分活动 1513124
关于科研通互助平台的介绍 1474401