Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models

计算机科学 生成语法 分歧(语言学) 人工智能 生成模型 机器学习 扩散 可微函数 数学 语言学 热力学 物理 数学分析 哲学
作者
Weijian Luo,Tianyang Hu,Shifeng Zhang,Jiacheng Sun,Zhenguo Li,Zhihua Zhang
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2305.18455
摘要

Due to the ease of training, ability to scale, and high sample quality, diffusion models (DMs) have become the preferred option for generative modeling, with numerous pre-trained models available for a wide variety of datasets. Containing intricate information about data distributions, pre-trained DMs are valuable assets for downstream applications. In this work, we consider learning from pre-trained DMs and transferring their knowledge to other generative models in a data-free fashion. Specifically, we propose a general framework called Diff-Instruct to instruct the training of arbitrary generative models as long as the generated samples are differentiable with respect to the model parameters. Our proposed Diff-Instruct is built on a rigorous mathematical foundation where the instruction process directly corresponds to minimizing a novel divergence we call Integral Kullback-Leibler (IKL) divergence. IKL is tailored for DMs by calculating the integral of the KL divergence along a diffusion process, which we show to be more robust in comparing distributions with misaligned supports. We also reveal non-trivial connections of our method to existing works such as DreamFusion, and generative adversarial training. To demonstrate the effectiveness and universality of Diff-Instruct, we consider two scenarios: distilling pre-trained diffusion models and refining existing GAN models. The experiments on distilling pre-trained diffusion models show that Diff-Instruct results in state-of-the-art single-step diffusion-based models. The experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models across various settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rui发布了新的文献求助10
刚刚
白宝宝北北白应助dfggg采纳,获得10
1秒前
阳光海云发布了新的文献求助50
1秒前
小胖鱼关注了科研通微信公众号
1秒前
昏睡的眼神完成签到 ,获得积分10
1秒前
NexusExplorer应助南乔采纳,获得10
1秒前
杜嘟嘟发布了新的文献求助10
1秒前
完美世界应助April采纳,获得10
2秒前
提手旁辰完成签到,获得积分20
2秒前
能干的邹完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
酒九完成签到,获得积分10
3秒前
刺槐完成签到,获得积分10
3秒前
Owen应助LLKK采纳,获得30
5秒前
5秒前
5秒前
6秒前
苏鱼完成签到 ,获得积分10
6秒前
恋空完成签到 ,获得积分10
6秒前
曲终人散完成签到,获得积分10
7秒前
wu发布了新的文献求助10
7秒前
wintercyan完成签到,获得积分10
7秒前
9秒前
9秒前
妮儿发布了新的文献求助10
9秒前
9秒前
MADKAI发布了新的文献求助10
10秒前
insane完成签到,获得积分10
10秒前
云儿发布了新的文献求助20
10秒前
Jasper应助哲999采纳,获得10
10秒前
wanci应助拟拟采纳,获得10
11秒前
王超超完成签到,获得积分10
11秒前
11秒前
圈圈发布了新的文献求助10
12秒前
狼来了aas完成签到,获得积分10
12秒前
12秒前
大胆的莛发布了新的文献求助10
13秒前
文静的信封完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740