Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models

计算机科学 生成语法 分歧(语言学) 人工智能 生成模型 机器学习 扩散 可微函数 数学 语言学 热力学 物理 数学分析 哲学
作者
Weijian Luo,Tianyang Hu,Shifeng Zhang,Jiacheng Sun,Zhenguo Li,Zhihua Zhang
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2305.18455
摘要

Due to the ease of training, ability to scale, and high sample quality, diffusion models (DMs) have become the preferred option for generative modeling, with numerous pre-trained models available for a wide variety of datasets. Containing intricate information about data distributions, pre-trained DMs are valuable assets for downstream applications. In this work, we consider learning from pre-trained DMs and transferring their knowledge to other generative models in a data-free fashion. Specifically, we propose a general framework called Diff-Instruct to instruct the training of arbitrary generative models as long as the generated samples are differentiable with respect to the model parameters. Our proposed Diff-Instruct is built on a rigorous mathematical foundation where the instruction process directly corresponds to minimizing a novel divergence we call Integral Kullback-Leibler (IKL) divergence. IKL is tailored for DMs by calculating the integral of the KL divergence along a diffusion process, which we show to be more robust in comparing distributions with misaligned supports. We also reveal non-trivial connections of our method to existing works such as DreamFusion, and generative adversarial training. To demonstrate the effectiveness and universality of Diff-Instruct, we consider two scenarios: distilling pre-trained diffusion models and refining existing GAN models. The experiments on distilling pre-trained diffusion models show that Diff-Instruct results in state-of-the-art single-step diffusion-based models. The experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models across various settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
科研通AI6应助剧院的饭桶采纳,获得10
1秒前
无极微光应助现代的青寒采纳,获得20
1秒前
米奇完成签到 ,获得积分10
1秒前
2秒前
2秒前
David123发布了新的文献求助10
2秒前
4秒前
4秒前
zywzyw完成签到,获得积分10
4秒前
4秒前
又又完成签到 ,获得积分10
4秒前
君尧关注了科研通微信公众号
5秒前
1101592875应助阳佟仇天采纳,获得10
5秒前
执着蓝完成签到,获得积分20
5秒前
bjx发布了新的文献求助10
5秒前
DreamSeker8发布了新的文献求助10
5秒前
6秒前
精明一寡发布了新的文献求助10
6秒前
myheat发布了新的文献求助10
6秒前
希望天下0贩的0应助bingyv采纳,获得10
6秒前
白衣卿相发布了新的文献求助10
7秒前
7秒前
大胆白凝发布了新的文献求助10
7秒前
7秒前
花灯王子发布了新的文献求助10
7秒前
8秒前
8秒前
ww完成签到 ,获得积分10
8秒前
魏家乐发布了新的文献求助10
8秒前
共享精神应助稳重的雅绿采纳,获得10
8秒前
桐桐应助li采纳,获得10
8秒前
hellojwx完成签到,获得积分10
9秒前
NexusExplorer应助isabelwy采纳,获得10
10秒前
烂漫纲完成签到,获得积分10
10秒前
嘎嘎完成签到,获得积分10
10秒前
L1995完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836