Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models

计算机科学 生成语法 分歧(语言学) 人工智能 生成模型 机器学习 扩散 可微函数 数学 语言学 热力学 物理 数学分析 哲学
作者
Weijian Luo,Tianyang Hu,Shifeng Zhang,Jiacheng Sun,Zhenguo Li,Zhihua Zhang
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2305.18455
摘要

Due to the ease of training, ability to scale, and high sample quality, diffusion models (DMs) have become the preferred option for generative modeling, with numerous pre-trained models available for a wide variety of datasets. Containing intricate information about data distributions, pre-trained DMs are valuable assets for downstream applications. In this work, we consider learning from pre-trained DMs and transferring their knowledge to other generative models in a data-free fashion. Specifically, we propose a general framework called Diff-Instruct to instruct the training of arbitrary generative models as long as the generated samples are differentiable with respect to the model parameters. Our proposed Diff-Instruct is built on a rigorous mathematical foundation where the instruction process directly corresponds to minimizing a novel divergence we call Integral Kullback-Leibler (IKL) divergence. IKL is tailored for DMs by calculating the integral of the KL divergence along a diffusion process, which we show to be more robust in comparing distributions with misaligned supports. We also reveal non-trivial connections of our method to existing works such as DreamFusion, and generative adversarial training. To demonstrate the effectiveness and universality of Diff-Instruct, we consider two scenarios: distilling pre-trained diffusion models and refining existing GAN models. The experiments on distilling pre-trained diffusion models show that Diff-Instruct results in state-of-the-art single-step diffusion-based models. The experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models across various settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
小张快跑发布了新的文献求助10
1秒前
2秒前
满天星完成签到,获得积分20
2秒前
小蘑菇应助狂野的凝芙采纳,获得10
2秒前
QQ完成签到,获得积分10
2秒前
3秒前
华仔应助Muya采纳,获得10
3秒前
3秒前
摸鱼宝完成签到,获得积分20
3秒前
闪闪乞完成签到,获得积分10
5秒前
晨曦发布了新的文献求助10
5秒前
咸鱼中下游完成签到,获得积分10
6秒前
Bo发布了新的文献求助20
6秒前
FashionBoy应助彪壮的斩采纳,获得10
7秒前
7秒前
7秒前
小猴子应助笑南采纳,获得20
7秒前
Nthorn_rone完成签到,获得积分10
7秒前
香蕉觅云应助Silence采纳,获得10
8秒前
炸鸡加热发布了新的文献求助10
8秒前
轮回1奇点发布了新的文献求助10
8秒前
8秒前
田様应助西海岸的风采纳,获得10
9秒前
闪电完成签到,获得积分10
9秒前
10秒前
10秒前
nipoo发布了新的文献求助10
10秒前
10秒前
胡图图完成签到 ,获得积分10
11秒前
plain完成签到,获得积分20
11秒前
11秒前
12秒前
小巧的寻双完成签到 ,获得积分10
12秒前
12秒前
简历发布了新的文献求助10
13秒前
科研通AI6应助lengchitu采纳,获得10
13秒前
13秒前
传奇3应助炸鸡加热采纳,获得10
14秒前
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583383
求助须知:如何正确求助?哪些是违规求助? 4667241
关于积分的说明 14766122
捐赠科研通 4609415
什么是DOI,文献DOI怎么找? 2529196
邀请新用户注册赠送积分活动 1498411
关于科研通互助平台的介绍 1467061