Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models

计算机科学 生成语法 分歧(语言学) 人工智能 生成模型 机器学习 扩散 可微函数 数学 语言学 热力学 物理 数学分析 哲学
作者
Weijian Luo,Tianyang Hu,Shifeng Zhang,Jiacheng Sun,Zhenguo Li,Zhihua Zhang
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2305.18455
摘要

Due to the ease of training, ability to scale, and high sample quality, diffusion models (DMs) have become the preferred option for generative modeling, with numerous pre-trained models available for a wide variety of datasets. Containing intricate information about data distributions, pre-trained DMs are valuable assets for downstream applications. In this work, we consider learning from pre-trained DMs and transferring their knowledge to other generative models in a data-free fashion. Specifically, we propose a general framework called Diff-Instruct to instruct the training of arbitrary generative models as long as the generated samples are differentiable with respect to the model parameters. Our proposed Diff-Instruct is built on a rigorous mathematical foundation where the instruction process directly corresponds to minimizing a novel divergence we call Integral Kullback-Leibler (IKL) divergence. IKL is tailored for DMs by calculating the integral of the KL divergence along a diffusion process, which we show to be more robust in comparing distributions with misaligned supports. We also reveal non-trivial connections of our method to existing works such as DreamFusion, and generative adversarial training. To demonstrate the effectiveness and universality of Diff-Instruct, we consider two scenarios: distilling pre-trained diffusion models and refining existing GAN models. The experiments on distilling pre-trained diffusion models show that Diff-Instruct results in state-of-the-art single-step diffusion-based models. The experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models across various settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
科研小哥发布了新的文献求助30
3秒前
哲999完成签到,获得积分10
3秒前
唐军完成签到,获得积分10
3秒前
似鱼完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助30
4秒前
yxf完成签到,获得积分10
5秒前
小二郎应助zdy采纳,获得10
5秒前
猪猪hero发布了新的文献求助10
6秒前
唐军发布了新的文献求助10
6秒前
6秒前
今后应助zz采纳,获得10
6秒前
田様应助俭朴从安采纳,获得10
8秒前
lym97完成签到 ,获得积分10
8秒前
可爱的函函应助穆青采纳,获得10
9秒前
树呀完成签到,获得积分10
11秒前
11秒前
12秒前
yznfly应助ww采纳,获得30
13秒前
Aurorademon发布了新的文献求助30
13秒前
茄子完成签到,获得积分10
13秒前
luxury发布了新的文献求助10
14秒前
结实的凤妖完成签到,获得积分10
15秒前
16秒前
zk完成签到,获得积分10
16秒前
ding应助科研通管家采纳,获得10
17秒前
ED应助科研通管家采纳,获得10
17秒前
zdy发布了新的文献求助10
17秒前
爆米花应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
ED应助科研通管家采纳,获得10
18秒前
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651