Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models

计算机科学 生成语法 分歧(语言学) 人工智能 生成模型 机器学习 扩散 可微函数 数学 语言学 热力学 物理 数学分析 哲学
作者
Weijian Luo,Tianyang Hu,Shifeng Zhang,Jiacheng Sun,Zhenguo Li,Zhihua Zhang
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2305.18455
摘要

Due to the ease of training, ability to scale, and high sample quality, diffusion models (DMs) have become the preferred option for generative modeling, with numerous pre-trained models available for a wide variety of datasets. Containing intricate information about data distributions, pre-trained DMs are valuable assets for downstream applications. In this work, we consider learning from pre-trained DMs and transferring their knowledge to other generative models in a data-free fashion. Specifically, we propose a general framework called Diff-Instruct to instruct the training of arbitrary generative models as long as the generated samples are differentiable with respect to the model parameters. Our proposed Diff-Instruct is built on a rigorous mathematical foundation where the instruction process directly corresponds to minimizing a novel divergence we call Integral Kullback-Leibler (IKL) divergence. IKL is tailored for DMs by calculating the integral of the KL divergence along a diffusion process, which we show to be more robust in comparing distributions with misaligned supports. We also reveal non-trivial connections of our method to existing works such as DreamFusion, and generative adversarial training. To demonstrate the effectiveness and universality of Diff-Instruct, we consider two scenarios: distilling pre-trained diffusion models and refining existing GAN models. The experiments on distilling pre-trained diffusion models show that Diff-Instruct results in state-of-the-art single-step diffusion-based models. The experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models across various settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mnc发布了新的文献求助10
刚刚
研友_VZG7GZ应助汪辉采纳,获得10
刚刚
优美的忻完成签到,获得积分20
刚刚
泓泽发布了新的文献求助10
1秒前
Dopamine发布了新的文献求助10
1秒前
小铭完成签到,获得积分10
2秒前
2秒前
3秒前
大个应助粥粥采纳,获得10
3秒前
哈哈哈发布了新的文献求助10
3秒前
干净绮烟完成签到,获得积分10
4秒前
瘦瘦安蕾完成签到 ,获得积分10
4秒前
华仔应助Nor采纳,获得10
6秒前
Akim应助孙伟健采纳,获得10
6秒前
llt发布了新的文献求助10
6秒前
ddx完成签到,获得积分10
7秒前
追尾的猫完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
滕滕发布了新的文献求助10
9秒前
9秒前
会科研的胡萝卜完成签到,获得积分10
9秒前
9秒前
11秒前
顾矜应助粥粥采纳,获得10
11秒前
小鱼完成签到 ,获得积分10
12秒前
小伊001完成签到,获得积分10
12秒前
chengzhiheng完成签到,获得积分10
12秒前
13秒前
弗洛莉娅完成签到,获得积分10
14秒前
完美世界应助宁天问采纳,获得10
14秒前
Jasper应助lasak采纳,获得10
14秒前
chengzhiheng发布了新的文献求助10
14秒前
呵呵完成签到 ,获得积分10
15秒前
哈哈哈完成签到,获得积分10
15秒前
独特南霜发布了新的文献求助10
16秒前
虚荣的泥猴桃完成签到 ,获得积分10
16秒前
孙伟健发布了新的文献求助10
17秒前
深情安青应助Dopamine采纳,获得10
17秒前
da发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424595
求助须知:如何正确求助?哪些是违规求助? 4538935
关于积分的说明 14164426
捐赠科研通 4455911
什么是DOI,文献DOI怎么找? 2443990
邀请新用户注册赠送积分活动 1435069
关于科研通互助平台的介绍 1412452