Clinical Features and Computed Tomography Radiomics-Based Model for Predicting Pancreatic Ductal Adenocarcinoma and Focal Mass-Forming Pancreatitis

医学 逻辑回归 接收机工作特性 胰腺导管腺癌 无线电技术 放射科 胰腺炎 胰腺癌 胰管 曲线下面积 计算机断层摄影术 内科学 癌症
作者
Yingjian Ye,Junyan Zhang,Ping Song,Ping Qin,Yan Hu,Ping An,Xiumei Li,Yong Lin,Jinsong Wang,Guoyan Feng
出处
期刊:Technology in Cancer Research & Treatment [SAGE Publishing]
卷期号:22: 153303382311807-153303382311807 被引量:1
标识
DOI:10.1177/15330338231180792
摘要

Objective: To establish a predictive model distinguishing focal mass-forming pancreatitis (FMFP) from pancreatic ductal adenocarcinoma (PDAC) based on computed tomography (CT) radiomics and clinical data. Methods: A total of 78 FMFP patients (FMFP group) and 120 PDAC patients (PDAC group) who were admitted to Xiangyang No.1 People's Hospital and Xiangyang Central Hospital from February 2012 to May 2021 and were pathologically diagnosed were included in this study, and were input to set up the training set and test set at a ratio of 7:3. The 3Dslicer software was used to extract the radiomic features and radiomic scores (Radscores) of the 2 groups, and the clinical data (age, gender, etc), CT imaging features (lesion location, size, enhancement degree, vascular wrapping, etc) and CT radiomic features of the 2 groups were compared. Logistic regression was used to screen the independent risk factors of the 2 groups, and multiple prediction models (clinical imaging model, radiomics model, and combined model) were established. Then the receiver operating characteristic (ROC) analysis and decision curve analysis (DCA) were conducted to compare the prediction performance and net benefit of the models. Results: The multivariate logistic regression results indicated that dilation of the main pancreatic duct, vascular wrapping, Radscore1 and Radscore2 were independent influencing factors for distinguishing FMFP from PDAC. In the training set, the combined model showed the best predictive performance (area under the ROC curve [AUC] 0.857, 95% CI [0.787-0.910]), significantly higher than the clinical imaging model (AUC 0.650, 95% CI [0.565-0.729]) and the radiomics model (AUC 0.812, 95% CI [0.759-0.890]). DCA confirmed that the combined model had the highest net benefit. These results were further validated by the test set. Conclusion: The combined model based on clinical-CT radiomics data can effectively identify FMFP and PDAC, providing a reference for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助lkz采纳,获得10
刚刚
刚刚
1秒前
大个应助苏苏苏采纳,获得10
2秒前
3秒前
phil完成签到,获得积分10
4秒前
听风者发布了新的文献求助10
4秒前
kiwi完成签到 ,获得积分10
5秒前
跳跃的洋葱完成签到 ,获得积分10
5秒前
忧郁凌波发布了新的文献求助10
6秒前
7秒前
Alina完成签到 ,获得积分10
7秒前
二三发布了新的文献求助10
8秒前
9秒前
10秒前
听风者完成签到,获得积分10
10秒前
猪猪hero发布了新的文献求助10
12秒前
华仔应助阿瑶与呆呆采纳,获得30
12秒前
12秒前
刘哔完成签到,获得积分10
13秒前
13秒前
忧郁凌波完成签到,获得积分10
14秒前
mengzhe完成签到,获得积分10
14秒前
酷炫青烟完成签到 ,获得积分10
15秒前
15秒前
qwe发布了新的文献求助10
16秒前
Hello应助yiyy采纳,获得10
16秒前
小气鬼发布了新的文献求助30
16秒前
xzy998应助老武采纳,获得10
17秒前
lqllll发布了新的文献求助10
17秒前
18秒前
四憙完成签到 ,获得积分10
19秒前
义气绿柳发布了新的文献求助10
20秒前
所所应助lqllll采纳,获得10
23秒前
24秒前
阿瑶与呆呆完成签到,获得积分10
26秒前
zzz发布了新的文献求助10
27秒前
广州队完成签到,获得积分10
28秒前
时梦冉完成签到 ,获得积分10
29秒前
Coraline应助lalala采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343