Prediction of GHG emissions from Chengdu Metro in the construction stage based on WOA-DELM

温室气体 粒子群优化 环境科学 环境工程 阶段(地层学) 工程类 计算机科学 算法 生态学 地质学 古生物学 生物
作者
Zihan Chen,Yingqing Guo,Chun Guo
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:139: 105235-105235 被引量:3
标识
DOI:10.1016/j.tust.2023.105235
摘要

With the mass construction of urban subways, the global greenhouse gas (GHG) emissions have been on the rise. This paper provides statistical evidence to support the infrastructure of subway emissions reduction through a study of GHG emissions during the construction stage of 6 stations and 7 sections of Chengdu Metro Line 18. Using the emission coefficient method, the GHG emissions from building material production, transportation and site construction in subway stations and shield sections were calculated, and a subway GHG emissions prediction model dependent on deep extreme learning machine (DELM) with whale optimization algorithm (WOA) was established(i.e., WOA-DELM). Compared with some optimized DELMs, namely wind driven optimizer (WDO) -DELM, grey wolf optimizer (GWO) -DELM, particle swarm optimizer (PSO) -DELM, artificial bee colony (ABC) -DELM, multi verse optimizer (MVO) -DELM, and atom search optimizer (ASO) -DELM, and some non-optimized algorithm models, namely back propagation neural network (BPNN), kernel extreme learning machine (KELM) and DELM, the correlation consistency of WOA-DELM algorithm prediction results (0.757) was found to be slightly higher. Through sensitivity analysis of the main input variables of subway GHG emissions with the WOA-DELM algorithm model, it was determined that the key influencing factors of station GHG emissions prediction were the station length and the depth of track surface, with relative change rates of corresponding variables of GHG emissions at 30.1% and 23.1% respectively. Finally, a rough prediction formula of GHG emissions from Chengdu Metro stations and shield sections were fitted based on the key influencing factors of GHG emissions. This study provides a practical and effective reference for reducing GHG emissions in subway construction and operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张口结舌的果实应助aguo采纳,获得30
刚刚
刚刚
injuly完成签到,获得积分10
刚刚
1秒前
LILI完成签到,获得积分10
1秒前
风语发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
顺心的莫茗完成签到,获得积分10
4秒前
火龙果发布了新的文献求助10
5秒前
nav发布了新的文献求助10
5秒前
6秒前
LILI发布了新的文献求助10
6秒前
6秒前
CodeCraft应助疯狂的水香采纳,获得10
7秒前
FashionBoy应助呆萌幼晴采纳,获得20
7秒前
emma发布了新的文献求助10
8秒前
9秒前
完美世界应助Realrr采纳,获得10
9秒前
9秒前
11秒前
hh完成签到,获得积分10
11秒前
12秒前
min发布了新的文献求助10
12秒前
胖大海发布了新的文献求助10
12秒前
Achilles发布了新的文献求助10
15秒前
轻松白秋发布了新的文献求助10
15秒前
16秒前
小羊苏西完成签到,获得积分10
16秒前
16秒前
李永春完成签到 ,获得积分10
17秒前
17秒前
顺利白竹发布了新的文献求助10
17秒前
18秒前
宁羽发布了新的文献求助20
18秒前
18秒前
19秒前
8R60d8应助梅子酒采纳,获得10
19秒前
一一应助难过的慕青采纳,获得10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3252120
求助须知:如何正确求助?哪些是违规求助? 2894918
关于积分的说明 8284229
捐赠科研通 2563608
什么是DOI,文献DOI怎么找? 1391769
科研通“疑难数据库(出版商)”最低求助积分说明 651925
邀请新用户注册赠送积分活动 628951