SEACKgram: a targeted method of optimal demodulation-band selection for compound faults diagnosis of rolling bearing

解调 断层(地质) 方位(导航) 频带 包络线(雷达) 振动 计算机科学 随机性 信号(编程语言) 控制理论(社会学) 地震学 算法 工程类 声学 电信 地质学 人工智能 数学 统计 物理 频道(广播) 雷达 控制(管理) 带宽(计算) 程序设计语言
作者
Wang Hui-bin,Changfeng Yan,Yingjie Zhao,Shengqiang Li,Jiadong Meng,Lixiao Wu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:1
标识
DOI:10.1177/14759217241235337
摘要

Rolling bearing plays an important role in carrying and transmitting power in rotating machinery, and the bearing fault is easy to lead to mechanical accidents, resulting in huge losses and casualties. Therefore, the condition monitoring and diagnosis of rolling bearings are very important to improve the safety of equipment. Compound fault is a common fault evolved from the initial defect, which is characterized by randomness, coupling, concealment, and secondary. The existence of these characteristics brings great challenges to the accurate diagnosis of compound faults. In the diagnosis of compound faults, the traditional methods that select the single optimal demodulation frequency band for analysis and identification sometimes cannot completely extract multiple fault components, which are prone to miss diagnosis and misdiagnosis. In order to solve this problem, the SEACKgram method is proposed by constructing a Square Envelope Unbiased Autocorrelation Correlation Kurtosis (SEACK) index. The frequency band of the original signal is divided by the Maximal Overlap Discrete Wavelet Packet Transform, and the SEACK index is used to quantitatively describe the fault signals of different frequency bands. According to the different fault periods, the resonant frequency bands of the maximum SEACK value are selected, then the resonance band signal is analyzed by square envelope spectrum, and the fault type is identified according to the fault characteristic frequency. The simulated and experimental vibration signals of rolling bearings with compound faults are used to verify the feasibility of the proposed method. The results show that the proposed SEACKgram can improve the accuracy of compound faults identification and would be applied in engineering practice to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
夯大力发布了新的文献求助10
刚刚
刚刚
1秒前
自觉沛芹完成签到,获得积分10
1秒前
YukiXu完成签到 ,获得积分10
1秒前
1秒前
桐桐应助SXM采纳,获得10
2秒前
波特卡斯D艾斯完成签到 ,获得积分10
3秒前
852应助排骨炖豆角采纳,获得10
4秒前
4秒前
顾矜应助木子采纳,获得10
4秒前
feng发布了新的文献求助10
4秒前
成就的小熊猫完成签到,获得积分10
5秒前
5秒前
Morgenstern_ZH完成签到,获得积分10
6秒前
hua发布了新的文献求助10
6秒前
_Forelsket_完成签到,获得积分10
6秒前
6秒前
半颗橙子完成签到 ,获得积分10
8秒前
科研通AI5应助zmy采纳,获得10
8秒前
善学以致用应助enoot采纳,获得10
9秒前
JamesPei应助失眠的血茗采纳,获得10
9秒前
青山发布了新的文献求助10
9秒前
亻鱼发布了新的文献求助10
10秒前
脑洞疼应助成就的小熊猫采纳,获得10
10秒前
10秒前
waterclouds完成签到 ,获得积分10
10秒前
圆圈儿完成签到,获得积分10
10秒前
司空剑封完成签到,获得积分10
11秒前
11秒前
海棠yiyi完成签到,获得积分10
11秒前
11秒前
梁小鑫发布了新的文献求助10
11秒前
Jenny应助圈圈采纳,获得10
12秒前
内向青文完成签到,获得积分10
12秒前
lefora完成签到,获得积分10
12秒前
丰知然应助CO2采纳,获得10
13秒前
Zhihu完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740