亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BlazeBVD: Make Scale-Time Equalization Great Again for Blind Video Deflickering

均衡(音频) 比例(比率) 计算机科学 盲均衡 电信 地理 地图学 频道(广播)
作者
Xinmin Qiu,Congying Han,Zicheng Zhang,Bonan Li,Tiande Guo,Pingyu Wang,Xuecheng Nie
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.06243
摘要

Developing blind video deflickering (BVD) algorithms to enhance video temporal consistency, is gaining importance amid the flourish of image processing and video generation. However, the intricate nature of video data complicates the training of deep learning methods, leading to high resource consumption and instability, notably under severe lighting flicker. This underscores the critical need for a compact representation beyond pixel values to advance BVD research and applications. Inspired by the classic scale-time equalization (STE), our work introduces the histogram-assisted solution, called BlazeBVD, for high-fidelity and rapid BVD. Compared with STE, which directly corrects pixel values by temporally smoothing color histograms, BlazeBVD leverages smoothed illumination histograms within STE filtering to ease the challenge of learning temporal data using neural networks. In technique, BlazeBVD begins by condensing pixel values into illumination histograms that precisely capture flickering and local exposure variations. These histograms are then smoothed to produce singular frames set, filtered illumination maps, and exposure maps. Resorting to these deflickering priors, BlazeBVD utilizes a 2D network to restore faithful and consistent texture impacted by lighting changes or localized exposure issues. BlazeBVD also incorporates a lightweight 3D network to amend slight temporal inconsistencies, avoiding the resource consumption issue. Comprehensive experiments on synthetic, real-world and generated videos, showcase the superior qualitative and quantitative results of BlazeBVD, achieving inference speeds up to 10x faster than state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自然涵易发布了新的文献求助10
3秒前
42秒前
42秒前
1分钟前
研友_LJajX8发布了新的文献求助10
1分钟前
1分钟前
1分钟前
模糊中正应助luckss采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
luckss发布了新的文献求助10
2分钟前
Powder发布了新的文献求助10
2分钟前
2分钟前
西安浴日光能赵炜完成签到,获得积分10
2分钟前
2分钟前
那奇泡芙发布了新的文献求助10
3分钟前
小二郎应助那奇泡芙采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
luckss发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
搜集达人应助舒服的觅夏采纳,获得10
5分钟前
mrjohn完成签到,获得积分10
5分钟前
5分钟前
5分钟前
HLT完成签到 ,获得积分10
5分钟前
5分钟前
聪明安白发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
模糊中正完成签到,获得积分0
6分钟前
ceeray23应助舒适的竺采纳,获得30
6分钟前
在水一方应助聪明安白采纳,获得10
7分钟前
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445140
求助须知:如何正确求助?哪些是违规求助? 3041131
关于积分的说明 8983996
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497158
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689697