Knowledge-based model generation for aircraft cabin noise prediction from pre-design data

噪音(视频) 飞机噪声 计算机科学 航空学 航空航天工程 人工智能 工程类 降噪 图像(数学)
作者
Christian Hesse,Pia Allebrodt,Mark Teschner,Jörn Biedermann
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4020507/v1
摘要

Abstract The climate targets set out in the "European Green Deal" call for the consideration and implementation of climate-friendly propulsion concepts and sustainable fuels in future aircraft configurations. This puts the use of very efficient propeller engines into the focus of aircraft design. However, these pose major challenges, especially to cabin acoustics, due to high, tonal sound pressure levels on the fuselage. The design of noise control measures requires the competence to predict the resulting interior noise as early as possible in the design process of the vehicle. This requires a high level of geometric and structural detail regarding the fuselage structure and cabin components. With increasing frequency range, the necessary structural details also increase, which have to be resolved in the simulation models due to the associated decreasing structural wavelength. Especially in the context of aircraft pre-design, there is usually not enough information available for a detailed vibro-acoustic modeling of the fuselage and cabin components, which allows a meaningful prediction of the vibrations and thus the cabin noise. Therefore, the knowledge-based tool FUGA (Fuselage Geometry Assembler) is developed for the targeted enrichment of preliminary design data with knowledge for detailed numerical analyses. This paper describes the knowledge-based geometry and model generation in FUGA, which can consider the necessary (increasing) level of detail for the vibro-acoustic prediction already in the preliminary design. For this purpose, aircraft data sets in the preliminary design data format CPACS (Common Parametric Aircraft Configuration Schema) form the modeling basis. Originating from the aircraft preliminary design, these initially describe the outer shell of the vehicle and are extended by detailed structural information that defines the geometric boundary conditions for component placement in cabin design. For the cabin components, the open-source geometry kernel OCCT (Open Cascade Technology) is used to provide geometries at the level of detail required for subsequent analyses. The geometry models are then discretized in open source (e.g. Gmsh) or commercial meshers and further used for numerical analysis. Finally, the prediction of cabin noise is demonstrated as a Proof of Concept using the example of a short-haul propeller-driven aircraft and the sensitivity of resulting simulation models to the fuselage skin thickness is investigated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
攀攀完成签到 ,获得积分10
3秒前
楠楠发布了新的文献求助10
4秒前
xh完成签到 ,获得积分10
5秒前
wanci应助优雅夏彤采纳,获得20
7秒前
共享精神应助小张要努力采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
遇上就这样吧应助小栗子采纳,获得60
9秒前
朴素的闭月完成签到,获得积分10
10秒前
10秒前
开放鸿涛应助清秀茹嫣采纳,获得10
13秒前
13秒前
15秒前
Sun发布了新的文献求助10
15秒前
月悦完成签到 ,获得积分10
17秒前
NingZH完成签到,获得积分10
17秒前
宝剑葫芦发布了新的文献求助10
19秒前
20秒前
明亮小凡完成签到 ,获得积分10
20秒前
呆萌雪晴发布了新的文献求助10
20秒前
jy完成签到,获得积分10
20秒前
ZSmile发布了新的文献求助30
20秒前
甜甜匪发布了新的文献求助10
22秒前
上官若男应助黄桃采纳,获得30
23秒前
shmily完成签到 ,获得积分10
23秒前
23秒前
追梦机完成签到,获得积分10
24秒前
善学以致用应助九章采纳,获得10
26秒前
跳跃的雪珊完成签到 ,获得积分10
26秒前
充电宝应助迅速的小天鹅采纳,获得10
26秒前
fdawn发布了新的文献求助10
27秒前
知行合一发布了新的文献求助10
28秒前
zyyin完成签到,获得积分10
28秒前
ii关闭了ii文献求助
29秒前
kemeng发布了新的文献求助10
30秒前
龙海完成签到 ,获得积分10
34秒前
tracuer完成签到,获得积分10
34秒前
LZT完成签到,获得积分10
34秒前
脑洞疼应助云正则采纳,获得10
35秒前
will发布了新的文献求助10
35秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606280
求助须知:如何正确求助?哪些是违规求助? 4690702
关于积分的说明 14865203
捐赠科研通 4704558
什么是DOI,文献DOI怎么找? 2542558
邀请新用户注册赠送积分活动 1508054
关于科研通互助平台的介绍 1472241