Therapeutic targets for diabetic kidney disease: proteome-wide Mendelian randomization and colocalization analyses

孟德尔随机化 疾病 蛋白质组 计算生物学 共域化 生物信息学 医学 全基因组关联研究 可药性 生物 遗传学 内科学 单核苷酸多态性 遗传变异 基因 基因型 神经科学
作者
Wei Zhang,Leilei Ma,Qianyi Zhou,Tao Gu,Xiaotian Zhang,Xing Huang
出处
期刊:Diabetes [American Diabetes Association]
标识
DOI:10.2337/db23-0564
摘要

At present, safe and effective treatment drugs are urgently needed for diabetic kidney disease (DKD). Circulating protein biomarkers with causal genetic evidence represent promising drug targets, which provides an opportunity to identify new therapeutic targets. Summary data from two protein quantitative trait loci (pQTL) studies: one involving 4,907 plasma proteins data from 35,559 individuals, and the other encompassing 4,657 plasma proteins among 7,213 European Americans. Summary statistics for DKD were obtained from a large genome-wide association study (3345 cases and 2372 controls) and the FinnGen study (3676 cases and 283,456 controls). Mendelian randomization (MR) analysis was conducted to examine the potential targets for DKD. The colocalization analysis was utilized to detect whether the potential proteins exist the shared causal variants. To enhance the credibility of the results, external validation was conducted. Additionally, enrichment analysis, assessment of protein druggability, and the protein-protein interaction (PPI) networks were employed to further enrich the research findings. The proteome-wide MR analyses identified 21 blood proteins that may causally be associated with DKD. Colocalization analysis further supported a causal relationship between 12 proteins and DKD, with external validation confirming four of these proteins, and TGFBI was affirmed through two separate group datasets. These results indicate that targeting these four proteins could be a promising approach for treating DKD, and warrant further clinical investigations

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助xiaokezhang采纳,获得10
1秒前
sober发布了新的文献求助10
2秒前
2秒前
jerry_x完成签到,获得积分10
2秒前
zl987发布了新的文献求助10
2秒前
3秒前
Paris完成签到,获得积分10
3秒前
忧伤的八宝粥完成签到,获得积分0
3秒前
lalala发布了新的文献求助10
4秒前
NexusExplorer应助STP顶峰相见采纳,获得10
4秒前
传奇3应助Ilan采纳,获得10
5秒前
FashionBoy应助子铭采纳,获得10
5秒前
5秒前
23完成签到,获得积分10
5秒前
oo发布了新的文献求助10
6秒前
落后以旋发布了新的文献求助10
6秒前
科研通AI2S应助banabanama采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
swswsw发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
无极微光应助阔达的夜南采纳,获得20
10秒前
11秒前
11秒前
11秒前
小李应助修辛采纳,获得10
11秒前
11秒前
12秒前
Tindal发布了新的文献求助10
12秒前
小李应助小涵采纳,获得10
13秒前
13秒前
SciGPT应助zl987采纳,获得10
13秒前
龙仁发布了新的文献求助10
13秒前
NexusExplorer应助顺利毕业采纳,获得30
14秒前
水蜜桃发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728563
求助须知:如何正确求助?哪些是违规求助? 5313670
关于积分的说明 15314683
捐赠科研通 4875796
什么是DOI,文献DOI怎么找? 2618967
邀请新用户注册赠送积分活动 1568573
关于科研通互助平台的介绍 1525175