A Multiscale Attention Mechanism Super-Resolution Confocal Microscopy for Wafer Defect Detection

薄脆饼 共焦显微镜 材料科学 显微镜 机制(生物学) 共焦 纳米技术 超分辨显微术 共焦激光扫描显微镜 分辨率(逻辑) 薄层荧光显微镜 光电子学 光学 计算机视觉 扫描共焦电子显微镜 计算机科学 人工智能 工程类 生物医学工程 物理 量子力学
作者
Xue-Feng Sun,Baoyuan Zhang,Yushan Wang,Jianning Mai,Yuhang Wang,Jiubin Tan,Weibo Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tase.2024.3358693
摘要

Confocal microscopy is an essential component of wafer defect detection systems. Wafers are raw materials used in the manufacture of semiconductor chips. The semiconductor chip manufacturing process undergoes frequent updates, which cause an increase in the number and types of defects. This leads to lengthy scanning times for large wafers, and warrants the need to enhance the throughput of optical microscopy inspections. To address this issue, we propose the use of the multi-scale residual dilated convolution attention mechanism network (MRDCAN) super-resolution reconstruction algorithm to reproduce high-resolution images from low-magnification objective lens acquired images. The algorithm introduces the attention mechanism to enhance the information richness of wafer images, introduces the multi-scale expansion convolution to expand the convolutional sensor field to eliminate artefacts to enrich the detailed information of wafer image contours, and meets the image quality requirements through the loss calculation method based on the combination of mean-square error (MSE) and structural similarity (SSIM) image evaluation indices. It is shown that the reconstruction of low-resolution wafer images using this algorithm breaks the optical diffraction limit and achieves the purpose of improving the wafer image resolution. Compared with state-of-the-art models, the proposed algorithm can achieve the best performance with an SSIM index of 94.26 percent for the reconstructed super-resolution wafer images. Our algorithm provides fresh insights into the current challenges of confocal microscopy in the field of wafer defect detection Note to Practitioners —Shrinking semiconductor wafer sizes and increasingly complex inspection steps lead to reduced throughput of optical microscope inspection systems. Current convolutional neural network (CNN) networks cannot solve the problem of super-resolution of complex wafer images well. This seriously affects their application in practical detection. Compared with other algorithms, the super-resolution reconstruction algorithm proposed in this paper has a short training time and a multi-scale structure that effectively prevents the loss function curve from oscillating. And the reconstructed wafer image achieves obvious advantages in terms of visual effect and evaluation indices, with strong robustness to Gaussian noise. In addition, the final discussion shows that high-resolution images can be reproduced through the combination of low-magnification objective lens and deep learning super-resolution algorithm, which can simplify the steps of wafer defect detection and increase the efficiency of the whole wafer defect detection by more than 100%. This study demonstrates the potential of super-resolution confocal microscopy for wafer defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
劣根完成签到,获得积分10
刚刚
JamesPei应助妞妞采纳,获得10
刚刚
冷傲的如柏完成签到,获得积分10
刚刚
百合子完成签到,获得积分10
刚刚
卓疾完成签到,获得积分10
1秒前
bobo完成签到,获得积分10
1秒前
1秒前
wdn0411完成签到,获得积分10
2秒前
112是233发布了新的文献求助10
2秒前
饱满一手完成签到 ,获得积分10
2秒前
徐小赞完成签到 ,获得积分10
2秒前
冷曦发布了新的文献求助10
3秒前
青阳发布了新的文献求助10
3秒前
柒号完成签到,获得积分10
3秒前
3秒前
好好好之顺利毕业完成签到,获得积分10
4秒前
5秒前
修仙应助Janet_Jing采纳,获得10
5秒前
娇气的白卉完成签到,获得积分10
5秒前
6秒前
6秒前
研友_西门孤晴完成签到,获得积分10
6秒前
毅梦发布了新的文献求助30
6秒前
这课题真顺利完成签到,获得积分10
7秒前
奋斗的雪曼完成签到,获得积分10
7秒前
我是老大应助我午饭呢采纳,获得10
7秒前
FashionBoy应助123123采纳,获得10
7秒前
可爱以松完成签到,获得积分10
7秒前
Jasper应助朱奕韬采纳,获得10
8秒前
syuen发布了新的文献求助10
8秒前
进击的小胳膊完成签到,获得积分10
8秒前
shawn发布了新的文献求助10
10秒前
10秒前
10秒前
小鹿儿完成签到,获得积分10
11秒前
jackish完成签到,获得积分10
12秒前
Lemuel完成签到,获得积分10
12秒前
榴莲酥不要榴莲完成签到,获得积分20
12秒前
YY完成签到,获得积分10
13秒前
权翼完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147019
求助须知:如何正确求助?哪些是违规求助? 2798354
关于积分的说明 7828125
捐赠科研通 2454959
什么是DOI,文献DOI怎么找? 1306544
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565