A Multiscale Attention Mechanism Super-Resolution Confocal Microscopy for Wafer Defect Detection

薄脆饼 共焦显微镜 材料科学 显微镜 机制(生物学) 共焦 纳米技术 超分辨显微术 共焦激光扫描显微镜 分辨率(逻辑) 薄层荧光显微镜 光电子学 光学 计算机视觉 扫描共焦电子显微镜 计算机科学 人工智能 工程类 生物医学工程 物理 量子力学
作者
Xue-Feng Sun,Baoyuan Zhang,Yushan Wang,J.J. Mai,Yuhang Wang,Jiubin Tan,Weibo Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tase.2024.3358693
摘要

Confocal microscopy is an essential component of wafer defect detection systems. Wafers are raw materials used in the manufacture of semiconductor chips. The semiconductor chip manufacturing process undergoes frequent updates, which cause an increase in the number and types of defects. This leads to lengthy scanning times for large wafers, and warrants the need to enhance the throughput of optical microscopy inspections. To address this issue, we propose the use of the multi-scale residual dilated convolution attention mechanism network (MRDCAN) super-resolution reconstruction algorithm to reproduce high-resolution images from low-magnification objective lens acquired images. The algorithm introduces the attention mechanism to enhance the information richness of wafer images, introduces the multi-scale expansion convolution to expand the convolutional sensor field to eliminate artefacts to enrich the detailed information of wafer image contours, and meets the image quality requirements through the loss calculation method based on the combination of mean-square error (MSE) and structural similarity (SSIM) image evaluation indices. It is shown that the reconstruction of low-resolution wafer images using this algorithm breaks the optical diffraction limit and achieves the purpose of improving the wafer image resolution. Compared with state-of-the-art models, the proposed algorithm can achieve the best performance with an SSIM index of 94.26 percent for the reconstructed super-resolution wafer images. Our algorithm provides fresh insights into the current challenges of confocal microscopy in the field of wafer defect detection Note to Practitioners —Shrinking semiconductor wafer sizes and increasingly complex inspection steps lead to reduced throughput of optical microscope inspection systems. Current convolutional neural network (CNN) networks cannot solve the problem of super-resolution of complex wafer images well. This seriously affects their application in practical detection. Compared with other algorithms, the super-resolution reconstruction algorithm proposed in this paper has a short training time and a multi-scale structure that effectively prevents the loss function curve from oscillating. And the reconstructed wafer image achieves obvious advantages in terms of visual effect and evaluation indices, with strong robustness to Gaussian noise. In addition, the final discussion shows that high-resolution images can be reproduced through the combination of low-magnification objective lens and deep learning super-resolution algorithm, which can simplify the steps of wafer defect detection and increase the efficiency of the whole wafer defect detection by more than 100%. This study demonstrates the potential of super-resolution confocal microscopy for wafer defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bxyyy应助合适台灯采纳,获得10
刚刚
搜集达人应助hkh采纳,获得10
1秒前
joyemovie完成签到,获得积分10
1秒前
1秒前
3秒前
SciGPT应助阳光的皮皮虾采纳,获得10
3秒前
上官若男应助zeno采纳,获得10
3秒前
3秒前
忧心的白竹完成签到,获得积分10
4秒前
我门牙有缝完成签到,获得积分20
4秒前
清蒸鱼发布了新的文献求助10
4秒前
joyemovie发布了新的文献求助10
5秒前
cc发布了新的文献求助10
5秒前
6秒前
空白完成签到 ,获得积分10
6秒前
cigar发布了新的文献求助10
6秒前
Sun完成签到,获得积分10
6秒前
情怀应助12138的9527采纳,获得10
7秒前
7秒前
Hello应助金启维采纳,获得10
7秒前
magicjerry发布了新的文献求助10
8秒前
mimi3358发布了新的文献求助10
8秒前
逆时针发布了新的文献求助10
8秒前
Lane_Crumus应助君临梅阿查采纳,获得10
8秒前
quhayley应助sen采纳,获得10
9秒前
开朗筮发布了新的文献求助30
9秒前
10秒前
10秒前
wz完成签到,获得积分20
11秒前
12秒前
研友_VZG7GZ应助昂口3采纳,获得10
12秒前
13秒前
mmhahaha完成签到 ,获得积分10
13秒前
13秒前
13秒前
网友依旧完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
bobocute完成签到,获得积分10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961392
求助须知:如何正确求助?哪些是违规求助? 3507731
关于积分的说明 11137649
捐赠科研通 3240136
什么是DOI,文献DOI怎么找? 1790806
邀请新用户注册赠送积分活动 872520
科研通“疑难数据库(出版商)”最低求助积分说明 803271