A Multiscale Attention Mechanism Super-Resolution Confocal Microscopy for Wafer Defect Detection

薄脆饼 共焦显微镜 材料科学 显微镜 机制(生物学) 共焦 纳米技术 超分辨显微术 共焦激光扫描显微镜 分辨率(逻辑) 薄层荧光显微镜 光电子学 光学 计算机视觉 扫描共焦电子显微镜 计算机科学 人工智能 工程类 生物医学工程 物理 量子力学
作者
Xue-Feng Sun,Baoyuan Zhang,Yushan Wang,J.J. Mai,Yuhang Wang,Jiubin Tan,Weibo Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:22: 1016-1027 被引量:10
标识
DOI:10.1109/tase.2024.3358693
摘要

Confocal microscopy is an essential component of wafer defect detection systems. Wafers are raw materials used in the manufacture of semiconductor chips. The semiconductor chip manufacturing process undergoes frequent updates, which cause an increase in the number and types of defects. This leads to lengthy scanning times for large wafers, and warrants the need to enhance the throughput of optical microscopy inspections. To address this issue, we propose the use of the multi-scale residual dilated convolution attention mechanism network (MRDCAN) super-resolution reconstruction algorithm to reproduce high-resolution images from low-magnification objective lens acquired images. The algorithm introduces the attention mechanism to enhance the information richness of wafer images, introduces the multi-scale expansion convolution to expand the convolutional sensor field to eliminate artefacts to enrich the detailed information of wafer image contours, and meets the image quality requirements through the loss calculation method based on the combination of mean-square error (MSE) and structural similarity (SSIM) image evaluation indices. It is shown that the reconstruction of low-resolution wafer images using this algorithm breaks the optical diffraction limit and achieves the purpose of improving the wafer image resolution. Compared with state-of-the-art models, the proposed algorithm can achieve the best performance with an SSIM index of 94.26 percent for the reconstructed super-resolution wafer images. Our algorithm provides fresh insights into the current challenges of confocal microscopy in the field of wafer defect detection Note to Practitioners —Shrinking semiconductor wafer sizes and increasingly complex inspection steps lead to reduced throughput of optical microscope inspection systems. Current convolutional neural network (CNN) networks cannot solve the problem of super-resolution of complex wafer images well. This seriously affects their application in practical detection. Compared with other algorithms, the super-resolution reconstruction algorithm proposed in this paper has a short training time and a multi-scale structure that effectively prevents the loss function curve from oscillating. And the reconstructed wafer image achieves obvious advantages in terms of visual effect and evaluation indices, with strong robustness to Gaussian noise. In addition, the final discussion shows that high-resolution images can be reproduced through the combination of low-magnification objective lens and deep learning super-resolution algorithm, which can simplify the steps of wafer defect detection and increase the efficiency of the whole wafer defect detection by more than 100%. This study demonstrates the potential of super-resolution confocal microscopy for wafer defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲨鱼游泳教练完成签到,获得积分10
1秒前
3秒前
4秒前
lsrlsr发布了新的文献求助10
4秒前
华仔应助傻傻的雅寒采纳,获得10
5秒前
王蕊发布了新的文献求助10
5秒前
伶俐鹤轩完成签到,获得积分10
6秒前
SciGPT应助杨小鸿采纳,获得10
7秒前
BIGDUCK发布了新的文献求助10
7秒前
王者归来完成签到,获得积分10
8秒前
伶俐鹤轩发布了新的文献求助20
9秒前
zhao完成签到,获得积分10
10秒前
超级手套完成签到,获得积分10
11秒前
Destiny完成签到,获得积分10
12秒前
htt完成签到,获得积分20
13秒前
14秒前
14秒前
jkdzp完成签到 ,获得积分10
14秒前
科研通AI6.1应助欢欢采纳,获得10
14秒前
15秒前
15秒前
17秒前
Itazu完成签到,获得积分10
17秒前
18秒前
公西焱发布了新的文献求助10
18秒前
leemiii完成签到 ,获得积分10
19秒前
20秒前
懦弱的含芙完成签到,获得积分10
21秒前
爱吃瑞士卷完成签到 ,获得积分10
21秒前
nancylan发布了新的文献求助10
21秒前
23秒前
lsrlsr完成签到,获得积分10
23秒前
24秒前
鲤鱼完成签到 ,获得积分10
24秒前
24秒前
25秒前
27秒前
可乐发布了新的文献求助10
27秒前
橙子完成签到 ,获得积分10
29秒前
深井冰发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978