A Multiscale Attention Mechanism Super-Resolution Confocal Microscopy for Wafer Defect Detection

薄脆饼 共焦显微镜 材料科学 显微镜 机制(生物学) 共焦 纳米技术 超分辨显微术 共焦激光扫描显微镜 分辨率(逻辑) 薄层荧光显微镜 光电子学 光学 计算机视觉 扫描共焦电子显微镜 计算机科学 人工智能 工程类 生物医学工程 物理 量子力学
作者
Xue-Feng Sun,Baoyuan Zhang,Yushan Wang,J.J. Mai,Yuhang Wang,Jiubin Tan,Weibo Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:22: 1016-1027 被引量:10
标识
DOI:10.1109/tase.2024.3358693
摘要

Confocal microscopy is an essential component of wafer defect detection systems. Wafers are raw materials used in the manufacture of semiconductor chips. The semiconductor chip manufacturing process undergoes frequent updates, which cause an increase in the number and types of defects. This leads to lengthy scanning times for large wafers, and warrants the need to enhance the throughput of optical microscopy inspections. To address this issue, we propose the use of the multi-scale residual dilated convolution attention mechanism network (MRDCAN) super-resolution reconstruction algorithm to reproduce high-resolution images from low-magnification objective lens acquired images. The algorithm introduces the attention mechanism to enhance the information richness of wafer images, introduces the multi-scale expansion convolution to expand the convolutional sensor field to eliminate artefacts to enrich the detailed information of wafer image contours, and meets the image quality requirements through the loss calculation method based on the combination of mean-square error (MSE) and structural similarity (SSIM) image evaluation indices. It is shown that the reconstruction of low-resolution wafer images using this algorithm breaks the optical diffraction limit and achieves the purpose of improving the wafer image resolution. Compared with state-of-the-art models, the proposed algorithm can achieve the best performance with an SSIM index of 94.26 percent for the reconstructed super-resolution wafer images. Our algorithm provides fresh insights into the current challenges of confocal microscopy in the field of wafer defect detection Note to Practitioners —Shrinking semiconductor wafer sizes and increasingly complex inspection steps lead to reduced throughput of optical microscope inspection systems. Current convolutional neural network (CNN) networks cannot solve the problem of super-resolution of complex wafer images well. This seriously affects their application in practical detection. Compared with other algorithms, the super-resolution reconstruction algorithm proposed in this paper has a short training time and a multi-scale structure that effectively prevents the loss function curve from oscillating. And the reconstructed wafer image achieves obvious advantages in terms of visual effect and evaluation indices, with strong robustness to Gaussian noise. In addition, the final discussion shows that high-resolution images can be reproduced through the combination of low-magnification objective lens and deep learning super-resolution algorithm, which can simplify the steps of wafer defect detection and increase the efficiency of the whole wafer defect detection by more than 100%. This study demonstrates the potential of super-resolution confocal microscopy for wafer defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
edward完成签到,获得积分10
1秒前
Orange应助拾意采纳,获得10
1秒前
icreat完成签到,获得积分10
1秒前
妮妮发布了新的文献求助10
3秒前
闪闪白亦完成签到 ,获得积分10
3秒前
Iridesent0v0发布了新的文献求助10
3秒前
渠安发布了新的文献求助30
5秒前
科研通AI2S应助木习习采纳,获得10
5秒前
闪闪白亦关注了科研通微信公众号
7秒前
7秒前
7秒前
Iridesent0v0完成签到,获得积分10
9秒前
gogogo完成签到,获得积分10
10秒前
10秒前
活力的尔阳完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
木习习完成签到,获得积分10
12秒前
bkagyin应助亦玉采纳,获得10
12秒前
12秒前
12秒前
爱吃肉肉的手性分子完成签到,获得积分10
13秒前
14秒前
拾意发布了新的文献求助10
15秒前
岁岁完成签到 ,获得积分10
16秒前
belly发布了新的文献求助10
16秒前
木习习发布了新的文献求助10
17秒前
17秒前
17秒前
Su发布了新的文献求助10
17秒前
可靠板栗完成签到,获得积分10
18秒前
kjc完成签到 ,获得积分10
18秒前
19秒前
地球为何自转完成签到,获得积分10
21秒前
搜集达人应助坚强的严青采纳,获得10
21秒前
21秒前
21秒前
fff1完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474