A Multiscale Attention Mechanism Super-Resolution Confocal Microscopy for Wafer Defect Detection

薄脆饼 共焦显微镜 材料科学 显微镜 机制(生物学) 共焦 纳米技术 超分辨显微术 共焦激光扫描显微镜 分辨率(逻辑) 薄层荧光显微镜 光电子学 光学 计算机视觉 扫描共焦电子显微镜 计算机科学 人工智能 工程类 生物医学工程 物理 量子力学
作者
Xue-Feng Sun,Baoyuan Zhang,Yushan Wang,J.J. Mai,Yuhang Wang,Jiubin Tan,Weibo Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:22: 1016-1027 被引量:10
标识
DOI:10.1109/tase.2024.3358693
摘要

Confocal microscopy is an essential component of wafer defect detection systems. Wafers are raw materials used in the manufacture of semiconductor chips. The semiconductor chip manufacturing process undergoes frequent updates, which cause an increase in the number and types of defects. This leads to lengthy scanning times for large wafers, and warrants the need to enhance the throughput of optical microscopy inspections. To address this issue, we propose the use of the multi-scale residual dilated convolution attention mechanism network (MRDCAN) super-resolution reconstruction algorithm to reproduce high-resolution images from low-magnification objective lens acquired images. The algorithm introduces the attention mechanism to enhance the information richness of wafer images, introduces the multi-scale expansion convolution to expand the convolutional sensor field to eliminate artefacts to enrich the detailed information of wafer image contours, and meets the image quality requirements through the loss calculation method based on the combination of mean-square error (MSE) and structural similarity (SSIM) image evaluation indices. It is shown that the reconstruction of low-resolution wafer images using this algorithm breaks the optical diffraction limit and achieves the purpose of improving the wafer image resolution. Compared with state-of-the-art models, the proposed algorithm can achieve the best performance with an SSIM index of 94.26 percent for the reconstructed super-resolution wafer images. Our algorithm provides fresh insights into the current challenges of confocal microscopy in the field of wafer defect detection Note to Practitioners —Shrinking semiconductor wafer sizes and increasingly complex inspection steps lead to reduced throughput of optical microscope inspection systems. Current convolutional neural network (CNN) networks cannot solve the problem of super-resolution of complex wafer images well. This seriously affects their application in practical detection. Compared with other algorithms, the super-resolution reconstruction algorithm proposed in this paper has a short training time and a multi-scale structure that effectively prevents the loss function curve from oscillating. And the reconstructed wafer image achieves obvious advantages in terms of visual effect and evaluation indices, with strong robustness to Gaussian noise. In addition, the final discussion shows that high-resolution images can be reproduced through the combination of low-magnification objective lens and deep learning super-resolution algorithm, which can simplify the steps of wafer defect detection and increase the efficiency of the whole wafer defect detection by more than 100%. This study demonstrates the potential of super-resolution confocal microscopy for wafer defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助加百莉采纳,获得10
3秒前
4秒前
Wqian发布了新的文献求助10
5秒前
8秒前
9秒前
CipherSage应助朴素的松采纳,获得10
9秒前
香菜大王完成签到 ,获得积分10
10秒前
Quanta发布了新的文献求助10
10秒前
嘻嘻哈哈发布了新的文献求助10
12秒前
13秒前
深情安青应助keyanxiaobaishu采纳,获得10
14秒前
inter发布了新的文献求助10
15秒前
SnownS发布了新的文献求助20
18秒前
19秒前
orixero应助杰果采纳,获得10
20秒前
24秒前
25秒前
bkagyin应助蓝莓西西果冻采纳,获得10
25秒前
Jodie发布了新的文献求助10
26秒前
机灵冥发布了新的文献求助10
26秒前
慕青应助朴素的松采纳,获得10
28秒前
加百莉发布了新的文献求助10
30秒前
Fitz完成签到,获得积分10
31秒前
王美美发布了新的文献求助10
35秒前
科研通AI6应助good采纳,获得10
36秒前
科研通AI6应助小巧的蓝血采纳,获得30
37秒前
尔玉完成签到 ,获得积分10
39秒前
科研通AI6应助华杰采纳,获得10
42秒前
呜呜完成签到 ,获得积分10
48秒前
欢喜的代容完成签到,获得积分10
48秒前
华仔应助动听的涵山采纳,获得10
48秒前
50秒前
孙乐777完成签到,获得积分10
52秒前
田様应助echo采纳,获得10
52秒前
王美美发布了新的文献求助10
54秒前
54秒前
小化化爱学习完成签到,获得积分10
55秒前
57秒前
隐形曼青应助阔达的嵩采纳,获得10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550