Driving Behavior Prediction Based on Combined Neural Network Model

人工神经网络 计算机科学 人工智能
作者
Runmei Li,Xiaoting Shu,Chen Li
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4488-4496 被引量:4
标识
DOI:10.1109/tcss.2024.3350199
摘要

Accurate behavior prediction of surrounding vehicles can greatly improve the operating safety of autonomous vehicles. However, in real traffic scence, the complexity and uncertainties of traffic flow bring great challenges to driving behavior prediction. This article proposes a driving behavior prediction model using a wide-deep framework that combines gradient boosting decision tree (GBDT), convolutional neural network (CNN), and long short-term memory network (LSTM) algorithm to fully mine driving behavior characteristics while improve interpretability of the CNN-LSTM model. The GBDT algorithm can quantitatively describe the interaction between the autonomous vehicle and its surrounding vehicles during the driving process, obtaining a series of driving behavior rules, and integrating the driving behavior rule features into the CNN-LSTM neural network. The CNN-LSTM neural network model is constructed to find the spatial features in driving trajectory by CNNs and the temporal features by LSTM networks. The accuracy of the driving behavior prediction model is further improved. Simulation experiments show the rationality and validity of themodel and algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
样子完成签到,获得积分20
2秒前
生椰拿铁完成签到 ,获得积分10
3秒前
3秒前
5秒前
Xiongxx发布了新的文献求助10
5秒前
FashionBoy应助Qiu采纳,获得10
6秒前
6秒前
6秒前
竹筏过海应助研友_LMBa6n采纳,获得30
8秒前
yang发布了新的文献求助20
8秒前
赘婿应助皮皮最可爱采纳,获得10
9秒前
久而久之完成签到 ,获得积分10
9秒前
9秒前
ding应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
janarbek应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
10秒前
虚心的如曼完成签到 ,获得积分10
10秒前
xzx发布了新的文献求助10
12秒前
研二发核心完成签到,获得积分10
12秒前
善学以致用应助zzz采纳,获得10
13秒前
14秒前
16秒前
JamesPei应助小柒采纳,获得10
18秒前
打打应助zzy采纳,获得10
18秒前
打打应助从容的慕山采纳,获得10
20秒前
22秒前
梦断奈何完成签到 ,获得积分10
23秒前
melisa完成签到,获得积分10
24秒前
H1998发布了新的文献求助10
26秒前
科研通AI2S应助啊哦嘿采纳,获得10
27秒前
斯文败类应助德尔塔捱斯采纳,获得10
28秒前
28秒前
30秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291