Abstract γ‐aminobutyric acid (GABA) has shown promise in enhancing crop tolerance to heavy metal stress. To improve the cadmium (Cd) phytoremediation capacity of hyperaccumulator Solanum nigrum var. humile , the effects of exogenous GABA on the growth and Cd accumulation of S. nigrum var. humile were studied. When exposed to Cd stress (0.1 mg/L) through irrigation, S. nigrum var. humile exhibited inhibited growth, characterized by decreased biomass and contents of photosynthetic pigments (chlorophyll a , chlorophyll b , total chlorophyll, and carotenoid). However, the application of exogenous GABA at 1 and 2 g/L increased various organs biomass and photosynthetic pigment content of S. nigrum var. humile to certain degree under Cd stress. Compared with the Cd treatment, the concentrations of 1 and 2 g/L GABA increased the shoot biomass by 8.24% and 16.62%, respectively. GABA also increased the Cd contents, bioconcentration factors, and Cd extractions in various organs of S. nigrum var. humile . Compared with the Cd treatment, the concentrations of 1 and 2 g/L GABA increased the shoot Cd extraction by 17.66% and 24.47%, respectively. Moreover, correlation and gray relational analyses showed that the shoot biomass, chlorophyll b content, and total chlorophyll content were the top three parameters closely related to shoot Cd extraction. These findings suggest that GABA can alleviate Cd‐induced stress in S. nigrum var. humile , thus enhancing its phytoremediation capacity for Cd‐contaminated soils.