Personalized Sports Health Recommendation System Assisted by Q-Learning Algorithm

推荐系统 计算机科学 期限(时间) 均方误差 机器学习 个性化学习 激励 人工智能 奇异值分解 数据挖掘 算法 数学 统计 物理 数学教育 量子力学 教学方法 经济 开放式学习 微观经济学 合作学习
作者
Yang Yang,Yuanji Zhao
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:: 1-13 被引量:4
标识
DOI:10.1080/10447318.2023.2295693
摘要

In response to the current problem of single sports plan and lack of long-term motivation in recommendation systems, a more intelligent personalized sports health recommendation system was designed by introducing Q-Learning (Quality Learning) algorithm. Firstly, user sports health data was collected, and the user model was constructed to track user sport preferences and historical behavior. Secondly, the sports environment was defined, including different types of sports activities, venues, and weather. Then, the reward function was formulated to reward and punish users based on their sports activities and goals, in order to maximize long-term health benefits. Finally, the Q-Learning algorithm was implemented to continuously iteratively learn and optimize user recommendation models to provide the best personalized sports recommendations. For personalized accuracy, indicators such as precision, recall, F1 value, MAE (Mean Absolute Error), and RMSE (Root Mean Square Error) were used to evaluate, while the system's participation in sports, user satisfaction, long-term incentive effects, and overall health improvement were collected. The results showed that the average precision of the recommendation system on 10 different datasets was 88%, and the average AUC (Area Under Curve) was 96%, which was 6.7% higher than the SVD (Singular Value Decomposition) algorithm. The user's sports persistence rate was improved by 25%, and the health score was improved by about 13.3%. These data not only reflect the superior performance of the recommendation system but also highlight its positive impact on long-term user motivation and overall health levels. The results indicate that the proposed personalized exercise health recommendation system, assisted by the Q-Learning algorithm, has significantly improved accuracy. Moreover, it offers users more intelligent and personalized exercise suggestions, effectively increasing long-term participation in physical activities and overall health levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
wen发布了新的文献求助10
2秒前
147发布了新的文献求助20
2秒前
Yi发布了新的文献求助10
2秒前
3秒前
蒸蒸日上发布了新的文献求助10
3秒前
5秒前
幸运草完成签到 ,获得积分10
5秒前
Mp4发布了新的文献求助10
5秒前
6秒前
6秒前
我是老大应助humble采纳,获得10
6秒前
dmyy313235发布了新的文献求助10
7秒前
hujin完成签到,获得积分10
9秒前
鸭鸭发布了新的文献求助10
10秒前
陈钦玺发布了新的文献求助10
10秒前
烟花应助今夜无人入眠采纳,获得10
10秒前
11秒前
11秒前
蓦然回首完成签到,获得积分10
11秒前
kimon完成签到,获得积分10
11秒前
11秒前
12秒前
Ander完成签到,获得积分10
14秒前
15秒前
tx发布了新的文献求助10
15秒前
16秒前
july九月发布了新的文献求助10
16秒前
打打应助caicai采纳,获得10
16秒前
今后应助花小胖采纳,获得10
17秒前
17秒前
17秒前
Yi完成签到,获得积分20
17秒前
杳鸢应助双枪耗子采纳,获得30
17秒前
17秒前
18秒前
147完成签到,获得积分10
18秒前
Ghostseyes完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515510
求助须知:如何正确求助?哪些是违规求助? 3097850
关于积分的说明 9236939
捐赠科研通 2792825
什么是DOI,文献DOI怎么找? 1532705
邀请新用户注册赠送积分活动 712209
科研通“疑难数据库(出版商)”最低求助积分说明 707201