已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CowScreeningDB: A public benchmark database for lameness detection in dairy cows

跛足 水准点(测量) 计算机科学 透明度(行为) 数据库 数据收集 不可用 机器学习 人工智能 数据挖掘 工程类 可靠性工程 医学 数学 统计 计算机安全 外科 大地测量学 地理
作者
Shahid Ismail,Moises Díaz,Cristina Carmona-Duarte,José Manuel Vilar,Miguel A. Ferrer
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108500-108500
标识
DOI:10.1016/j.compag.2023.108500
摘要

Lameness is one of the costliest pathological problems affecting dairy animals. It is usually assessed by trained veterinary clinicians who observe features such as gait symmetry or gait parameters as step counts in real time. With the development of artificial intelligence, various modular systems have been proposed to minimize subjectivity in lameness assessment. However, the major limitation in their development is the unavailability of a public database, as most existing ones are either commercial or privately held. To tackle this limitation, we have introduced CowScreeningDB, a multi-sensor database which was built with data from 43 dairy cows. Cows were monitored using smart watches during their normal daily routine. The uniqueness of the database lies in its data collection environment, sampling methodology, detailed sensor information, and the applications used for data conversion and storage, which ensure transparency and replicability. This data transparency makes CowScreeningDB a valuable and objectively comparable resource for further development of techniques for lameness detection for dairy cows. In addition to publicly sharing the database, we present a machine learning technique which classifies cows as healthy or lame by using raw sensory data. To facilitate fair comparisons with state-of-the-art methods, we introduce a novel benchmark. Combining the database, the machine learning technique and the benchmark validate our major objective, which is to establish the relationship between sensor data and lameness. The developed technique reports an average accuracy of 77 % for the best case scenario and presents perspectives for further development. By introducing this framework which encompasses the database, the classification algorithm and the benchmark, we significantly reduce subjectively in lameness assessment. This contribution to lameness detection fosters innovation in the field and promotes transparent, reproducible research in the pursuit of more effective management of dairy cow lameness. Lameness detection is one of the main tasks in dairy systems, given its importance in the production ambit. However, the data used during detection is generally either held privately or sold commercially. In this study, we create a multi-sensor database (CowScreeningDB), which can be used for lameness. Because we have made the database public1 and free of charge for research purposes, it should act as a benchmark allowing to objectively compare techniques put forth to deal with lameness. We also provide details of the sampling system used, comprised of hardware and a baseline classification algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Frank完成签到 ,获得积分10
3秒前
Rabbit完成签到 ,获得积分10
3秒前
和和和完成签到,获得积分10
3秒前
王木木完成签到 ,获得积分10
4秒前
HS完成签到,获得积分10
5秒前
kk完成签到 ,获得积分10
5秒前
落后的萃完成签到 ,获得积分10
5秒前
热带蚂蚁完成签到 ,获得积分10
5秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
干净千青发布了新的文献求助10
9秒前
高屋建瓴完成签到,获得积分10
9秒前
陌上花开发布了新的文献求助10
9秒前
星流xx完成签到 ,获得积分10
10秒前
asdfqwer完成签到 ,获得积分0
10秒前
jojokin发布了新的文献求助10
12秒前
Suttier完成签到 ,获得积分10
14秒前
科研通AI5应助Jmax采纳,获得10
15秒前
yy完成签到 ,获得积分10
15秒前
16秒前
17秒前
Lucky.完成签到 ,获得积分0
17秒前
JamesPei应助干净千青采纳,获得10
18秒前
戈屿完成签到 ,获得积分10
22秒前
彦子完成签到 ,获得积分10
22秒前
传奇3应助ytttt采纳,获得10
23秒前
Shiku完成签到,获得积分10
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
Shiku发布了新的文献求助10
25秒前
Judy完成签到 ,获得积分10
26秒前
阔达的太阳完成签到,获得积分10
26秒前
DSUNNY完成签到 ,获得积分10
27秒前
LU完成签到 ,获得积分10
27秒前
闪闪灯泡完成签到 ,获得积分10
28秒前
cuber完成签到 ,获得积分10
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666266
求助须知:如何正确求助?哪些是违规求助? 3225309
关于积分的说明 9762492
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759242
科研通“疑难数据库(出版商)”最低求助积分说明 735185