环氧树脂
材料科学
纳米纤维
复合材料
接口(物质)
静电纺丝
聚合物
接触角
坐滴法
作者
Furui Zhu,Lu Ke,Zheng Feng,Jiale Zhou,Chuanxi Li,R. L. Zhang
标识
DOI:10.1016/j.tws.2024.111765
摘要
The epoxy-bonded interfaces between carbon fiber reinforced polymer (CFRP) and steel usually have insufficient strength and toughness, and the toughening of bonded interface is a key problem for the usage of CFRP in steel structures. In this study, electrospun nanofiber veils were first proposed to enhance the bond performance of CFRP-steel epoxy-bonded interfaces. Firstly, shear tests were conducted on neat epoxy and nano-modified single-lap aluminum-aluminum joints to determine the optimal areal density and number of layers of nanofiber veils, as well as the optimal curing processes. Then, a series of neat epoxy and nano-modified CFRP-steel double-lap joints with different bond lengths were tested to investigate the size effect of the bond behavior. The displacement and strain field evolution of the joints were captured by the digital image correlation (DIC) technique, allowing for visualization of the detailed failure process. The failure modes, load-displacement curves, CFRP strain distributions, and bond-slip relationships of the CFRP-steel joints were obtained. Both the tests on aluminum-aluminum and CFRP-steel joints show that the optimal modification strategy is incorporating 3 layers of nanofiber wels with an areal density of 4.5 g/m2, with 5 h room-temperature and 2 h 80°C high-temperature curing. The primary failure mode of CFRP-steel joints is CFRP delamination accompanied by CFRP-adhesive interface or steel-adhesive interface debonding. The bond strengths of the modified joints with 3 layers of 1.5 g/m2 and 4.5 g/m2 nanofiber veils are increased by 7% and 25% compared to those of un-modified joints, respectively. The 4.5 g/m2 nanofiber veils modified bonded interface has an effective bond length of about 152 mm, with a corresponding ultimate bearing capacity of 117 kN. Different from the triangular (brittle) shape of most neat epoxy interfaces, the nano-modified interfaces have trapezoidal (ductile) bond-slip relationships, providing superior cracking resistance. Moreover, a comparison with the bond strength of SiO2 nano-particles and carbon nanotubes (CNTs) modified joints revealed that nanofiber veil modification comes to higher bond strength in most cases. The proposed electrospun nanofiber veil modification technique provides a great insight into the interfacial toughening of CFRP-steel composite structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI