亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating curvilinear time-varying treatment effects: Combining g-estimation of structural nested mean models with time-varying effect models for longitudinal causal inference.

因果推理 协变量 混淆 计量经济学 边际结构模型 推论 统计推断 稳健性(进化) 估计 因果关系(物理学) 统计 规范 数学 计算机科学 人工智能 基因 物理 量子力学 生物化学 经济 化学 管理
作者
Wen Wei Loh
出处
期刊:Psychological Methods [American Psychological Association]
被引量:2
标识
DOI:10.1037/met0000637
摘要

Longitudinal designs can fortify causal inquiries of a focal predictor (i.e., treatment) on an outcome. But valid causal inferences are complicated by causal feedback between confounders and treatment over time. G-estimation of a structural nested mean model (SNMM) is designed to handle the complexities beset by measured time-varying or treatment-dependent confounding in longitudinal data. But valid inference requires correctly specifying the functional form of the SNMM, such as how the effects stay constant or change over time. In this article, we develop a g-estimation strategy for linear structural nested mean models whose causal parameters adopt the form of time-varying coefficient functions. These time-varying coefficient functions are smooth semiparametric functions of time that permit probing how the treatment effects may change curvilinearly. Further effect modification by time-invariant and time-varying covariates can be readily postulated in the SNMM to test fine-grained effect heterogeneity. We then describe a g-estimation strategy for estimating such an SNMM. We utilize the established time-varying effect model (TVEM) approach from the prevention and psychotherapy research literature for modeling flexible changes in covariate-outcome associations over time. Moreover, we exploit a known benefit of g-estimation over routine regression methods: its double robustness conferring protection against biases induced by certain forms of model misspecification. We encourage psychology researchers seeking correct causal conclusions from longitudinal data to use an SNMM with time-varying coefficient functions to assess curvilinear causal effects over time, and to use g-estimation with TVEM to resolve measured treatment-dependent confounding. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
小鱼儿发布了新的文献求助10
26秒前
blueskyzhi完成签到,获得积分10
38秒前
andrele应助科研通管家采纳,获得10
41秒前
andrele应助科研通管家采纳,获得10
41秒前
1分钟前
Chen完成签到,获得积分10
1分钟前
不秃燃的小老弟完成签到 ,获得积分10
1分钟前
1分钟前
keraxia发布了新的文献求助10
1分钟前
keraxia完成签到,获得积分20
2分钟前
平淡剑鬼完成签到,获得积分10
2分钟前
2分钟前
2分钟前
柒末仙完成签到,获得积分10
2分钟前
隐形曼青应助柒末仙采纳,获得10
2分钟前
2分钟前
RONG完成签到 ,获得积分10
2分钟前
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
111完成签到 ,获得积分10
3分钟前
jiabu完成签到 ,获得积分10
3分钟前
WWW完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
斯文败类应助科研通管家采纳,获得30
4分钟前
小马甲应助科研通管家采纳,获得10
4分钟前
科目三应助眨眼采纳,获得10
5分钟前
5分钟前
伶俐的金连完成签到 ,获得积分10
5分钟前
眨眼发布了新的文献求助10
5分钟前
5分钟前
完美世界应助dfgrtbddffh采纳,获得10
5分钟前
liuyux发布了新的文献求助10
5分钟前
无花果应助眨眼采纳,获得10
5分钟前
倔大三应助liuyux采纳,获得10
5分钟前
5分钟前
眨眼发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845280
求助须知:如何正确求助?哪些是违规求助? 6200992
关于积分的说明 15616333
捐赠科研通 4962111
什么是DOI,文献DOI怎么找? 2675297
邀请新用户注册赠送积分活动 1620043
关于科研通互助平台的介绍 1575327