Development of a vehicle-mounted soil organic matter detection system based on near-infrared spectroscopy and image information fusion

卷积神经网络 近红外光谱 光谱学 稳健性(进化) 人工智能 融合 均方误差 核(代数) 计算机科学 模式识别(心理学) 传感器融合 数学 材料科学 化学 物理 统计 光学 语言学 哲学 量子力学 生物化学 组合数学 基因
作者
Yong‐Yan Cao,Wei Yang,Hao Li,Hao Zhang,Minzan Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045501-045501 被引量:9
标识
DOI:10.1088/1361-6501/ad179f
摘要

Abstract In the practical application of farmland, the soil organic matter prediction model established by the traditional near-infrared (NIR) spectroscopy is affected by factors such as soil texture, which leads to a serious decline in the accuracy of the model. To improve the robustness and prediction accuracy of the model, a prediction model based on NIR spectroscopy and image fusion is proposed. A 1D-CNN organic matter prediction model (based on NIR spectroscopy) was established using eight characteristic wavelengths of extracted soil organic matter (932 nm, 999 nm, 1083 nm, 1191 nm, 1316 nm, 1356 nm, 1583 nm, and 1626 nm) as spectral information. A 2D -CNN organic matter prediction model was established using soil RGB images as information. Based on the idea of model weight fusion, 1D-CNN and 2D-CNN models are fused. When using small convolutional kernels (three-layer convolutional kernel size: 3*3, 1*1, 1*1) and 1D-CNN:2D-CNN = 6:4, the model has the highest prediction accuracy ( R 2 = 0.872). The optimal fusion model was embedded into the inspection system. The final laboratory and field testing results are as follows: under laboratory conditions, the detection accuracy R 2 of the 1D CNN prediction model, 2D-CNN prediction model, and fusion model are 0.838, 0.781, and 0.869, respectively. The root mean square error is 3.005, 3.546, and 2.678, respectively. The above experimental data indicates that the R 2 of the fused model is more accurate compared to the model established with a single information. In the field test, the R 2 detection accuracy of 1D-CNN prediction model, 2D-CNN prediction model and fusion model is 0.809, 0.731 and 0.835, respectively. The root mean square errors are 3.466, 3.828 and 2.973, respectively. The results show that the fusion model improves the prediction accuracy and model robustness, and the detection system can meet the needs of soil nutrient detection in farmland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenxi完成签到,获得积分20
2秒前
2秒前
3秒前
6秒前
Zachary完成签到,获得积分10
6秒前
6秒前
旋转木马9个完成签到 ,获得积分10
9秒前
9秒前
找不到头大完成签到,获得积分20
10秒前
11秒前
13秒前
没食子酸完成签到,获得积分10
13秒前
14秒前
无极微光应助Jia采纳,获得20
15秒前
胡杨树2006完成签到,获得积分10
16秒前
fujun0095发布了新的文献求助10
17秒前
17秒前
17秒前
wxy发布了新的文献求助10
18秒前
zhaoyue完成签到 ,获得积分10
20秒前
科研狗的春天完成签到 ,获得积分10
21秒前
筷子夹豆腐脑完成签到,获得积分10
22秒前
22秒前
Jenny发布了新的文献求助10
23秒前
Estrella发布了新的文献求助10
23秒前
dandna完成签到 ,获得积分10
23秒前
晴心完成签到,获得积分10
27秒前
苹果鱼完成签到,获得积分10
28秒前
DD完成签到,获得积分10
28秒前
张二田发布了新的文献求助10
29秒前
tracer526发布了新的文献求助10
29秒前
萨尔莫斯发布了新的文献求助10
30秒前
35秒前
王佳俊完成签到,获得积分10
36秒前
36秒前
37秒前
Owen应助辜卅采纳,获得10
39秒前
39秒前
ding应助wxy采纳,获得10
45秒前
科研通AI6应助fujun0095采纳,获得10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951