Development of a vehicle-mounted soil organic matter detection system based on near-infrared spectroscopy and image information fusion

卷积神经网络 近红外光谱 光谱学 稳健性(进化) 人工智能 融合 均方误差 核(代数) 计算机科学 模式识别(心理学) 传感器融合 数学 材料科学 化学 物理 统计 光学 语言学 哲学 量子力学 生物化学 组合数学 基因
作者
Yong‐Yan Cao,Wei Yang,Hao Li,Hao Zhang,Minzan Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045501-045501 被引量:2
标识
DOI:10.1088/1361-6501/ad179f
摘要

Abstract In the practical application of farmland, the soil organic matter prediction model established by the traditional near-infrared (NIR) spectroscopy is affected by factors such as soil texture, which leads to a serious decline in the accuracy of the model. To improve the robustness and prediction accuracy of the model, a prediction model based on NIR spectroscopy and image fusion is proposed. A 1D-CNN organic matter prediction model (based on NIR spectroscopy) was established using eight characteristic wavelengths of extracted soil organic matter (932 nm, 999 nm, 1083 nm, 1191 nm, 1316 nm, 1356 nm, 1583 nm, and 1626 nm) as spectral information. A 2D -CNN organic matter prediction model was established using soil RGB images as information. Based on the idea of model weight fusion, 1D-CNN and 2D-CNN models are fused. When using small convolutional kernels (three-layer convolutional kernel size: 3*3, 1*1, 1*1) and 1D-CNN:2D-CNN = 6:4, the model has the highest prediction accuracy ( R 2 = 0.872). The optimal fusion model was embedded into the inspection system. The final laboratory and field testing results are as follows: under laboratory conditions, the detection accuracy R 2 of the 1D CNN prediction model, 2D-CNN prediction model, and fusion model are 0.838, 0.781, and 0.869, respectively. The root mean square error is 3.005, 3.546, and 2.678, respectively. The above experimental data indicates that the R 2 of the fused model is more accurate compared to the model established with a single information. In the field test, the R 2 detection accuracy of 1D-CNN prediction model, 2D-CNN prediction model and fusion model is 0.809, 0.731 and 0.835, respectively. The root mean square errors are 3.466, 3.828 and 2.973, respectively. The results show that the fusion model improves the prediction accuracy and model robustness, and the detection system can meet the needs of soil nutrient detection in farmland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到,获得积分10
刚刚
1秒前
2秒前
英俊的铭应助小安采纳,获得10
3秒前
4秒前
sun完成签到,获得积分10
4秒前
耍酷的夏云应助勤劳落雁采纳,获得10
6秒前
6秒前
ywang发布了新的文献求助10
6秒前
车秋寒完成签到,获得积分10
6秒前
刘哈哈关注了科研通微信公众号
6秒前
葱饼完成签到 ,获得积分10
7秒前
Anquan完成签到,获得积分10
7秒前
yudandan@CJLU发布了新的文献求助10
8秒前
鱼儿123完成签到,获得积分10
8秒前
端庄的访枫完成签到 ,获得积分10
9秒前
车秋寒发布了新的文献求助10
9秒前
9秒前
完美秋烟完成签到,获得积分10
10秒前
11秒前
13秒前
lee1992完成签到,获得积分10
13秒前
nextconnie发布了新的文献求助10
14秒前
nextconnie发布了新的文献求助10
14秒前
nextconnie发布了新的文献求助10
14秒前
CO2发布了新的文献求助10
15秒前
uniquedl完成签到 ,获得积分10
15秒前
nextconnie发布了新的文献求助10
15秒前
子伊完成签到 ,获得积分10
16秒前
19秒前
19秒前
19秒前
今后应助憨鬼憨切采纳,获得10
21秒前
21秒前
22秒前
greenPASS666完成签到,获得积分10
24秒前
KYN发布了新的文献求助10
24秒前
25秒前
meng发布了新的文献求助10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849