Development of a vehicle-mounted soil organic matter detection system based on near-infrared spectroscopy and image information fusion

卷积神经网络 近红外光谱 光谱学 稳健性(进化) 人工智能 融合 均方误差 核(代数) 计算机科学 模式识别(心理学) 传感器融合 数学 材料科学 化学 物理 统计 光学 语言学 哲学 量子力学 生物化学 组合数学 基因
作者
Yong‐Yan Cao,Wei Yang,Hao Li,Hao Zhang,Minzan Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045501-045501 被引量:2
标识
DOI:10.1088/1361-6501/ad179f
摘要

Abstract In the practical application of farmland, the soil organic matter prediction model established by the traditional near-infrared (NIR) spectroscopy is affected by factors such as soil texture, which leads to a serious decline in the accuracy of the model. To improve the robustness and prediction accuracy of the model, a prediction model based on NIR spectroscopy and image fusion is proposed. A 1D-CNN organic matter prediction model (based on NIR spectroscopy) was established using eight characteristic wavelengths of extracted soil organic matter (932 nm, 999 nm, 1083 nm, 1191 nm, 1316 nm, 1356 nm, 1583 nm, and 1626 nm) as spectral information. A 2D -CNN organic matter prediction model was established using soil RGB images as information. Based on the idea of model weight fusion, 1D-CNN and 2D-CNN models are fused. When using small convolutional kernels (three-layer convolutional kernel size: 3*3, 1*1, 1*1) and 1D-CNN:2D-CNN = 6:4, the model has the highest prediction accuracy ( R 2 = 0.872). The optimal fusion model was embedded into the inspection system. The final laboratory and field testing results are as follows: under laboratory conditions, the detection accuracy R 2 of the 1D CNN prediction model, 2D-CNN prediction model, and fusion model are 0.838, 0.781, and 0.869, respectively. The root mean square error is 3.005, 3.546, and 2.678, respectively. The above experimental data indicates that the R 2 of the fused model is more accurate compared to the model established with a single information. In the field test, the R 2 detection accuracy of 1D-CNN prediction model, 2D-CNN prediction model and fusion model is 0.809, 0.731 and 0.835, respectively. The root mean square errors are 3.466, 3.828 and 2.973, respectively. The results show that the fusion model improves the prediction accuracy and model robustness, and the detection system can meet the needs of soil nutrient detection in farmland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋壳柯发布了新的文献求助10
3秒前
3秒前
S2完成签到,获得积分10
5秒前
5秒前
共享精神应助qy97采纳,获得10
7秒前
9秒前
LJ发布了新的文献求助10
10秒前
11秒前
crains完成签到,获得积分10
11秒前
英姑应助Mira采纳,获得10
12秒前
Ali发布了新的文献求助30
18秒前
18秒前
21秒前
专注的青荷完成签到,获得积分20
24秒前
Sebastian发布了新的文献求助10
24秒前
crains给crains的求助进行了留言
26秒前
26秒前
FashionBoy应助科研通管家采纳,获得10
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
研友_VZG7GZ应助科研通管家采纳,获得10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
模糊中正应助科研通管家采纳,获得100
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
研友_VZG7GZ应助科研通管家采纳,获得10
27秒前
打打应助科研通管家采纳,获得10
27秒前
852应助科研通管家采纳,获得10
27秒前
丰知然应助科研通管家采纳,获得10
27秒前
28秒前
28秒前
29秒前
情怀应助LJ采纳,获得10
29秒前
rosalieshi应助shame采纳,获得50
30秒前
gwen发布了新的文献求助10
30秒前
Alive完成签到,获得积分10
31秒前
Cindy完成签到,获得积分20
33秒前
34秒前
34秒前
34秒前
35秒前
Sebastian完成签到,获得积分10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316718
求助须知:如何正确求助?哪些是违规求助? 2948488
关于积分的说明 8540905
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436143
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724