Development of a vehicle-mounted soil organic matter detection system based on near-infrared spectroscopy and image information fusion

卷积神经网络 近红外光谱 光谱学 稳健性(进化) 人工智能 融合 均方误差 核(代数) 计算机科学 模式识别(心理学) 传感器融合 数学 材料科学 化学 物理 统计 光学 语言学 哲学 量子力学 生物化学 组合数学 基因
作者
Yong‐Yan Cao,Wei Yang,Hao Li,Hao Zhang,Minzan Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045501-045501 被引量:10
标识
DOI:10.1088/1361-6501/ad179f
摘要

Abstract In the practical application of farmland, the soil organic matter prediction model established by the traditional near-infrared (NIR) spectroscopy is affected by factors such as soil texture, which leads to a serious decline in the accuracy of the model. To improve the robustness and prediction accuracy of the model, a prediction model based on NIR spectroscopy and image fusion is proposed. A 1D-CNN organic matter prediction model (based on NIR spectroscopy) was established using eight characteristic wavelengths of extracted soil organic matter (932 nm, 999 nm, 1083 nm, 1191 nm, 1316 nm, 1356 nm, 1583 nm, and 1626 nm) as spectral information. A 2D -CNN organic matter prediction model was established using soil RGB images as information. Based on the idea of model weight fusion, 1D-CNN and 2D-CNN models are fused. When using small convolutional kernels (three-layer convolutional kernel size: 3*3, 1*1, 1*1) and 1D-CNN:2D-CNN = 6:4, the model has the highest prediction accuracy ( R 2 = 0.872). The optimal fusion model was embedded into the inspection system. The final laboratory and field testing results are as follows: under laboratory conditions, the detection accuracy R 2 of the 1D CNN prediction model, 2D-CNN prediction model, and fusion model are 0.838, 0.781, and 0.869, respectively. The root mean square error is 3.005, 3.546, and 2.678, respectively. The above experimental data indicates that the R 2 of the fused model is more accurate compared to the model established with a single information. In the field test, the R 2 detection accuracy of 1D-CNN prediction model, 2D-CNN prediction model and fusion model is 0.809, 0.731 and 0.835, respectively. The root mean square errors are 3.466, 3.828 and 2.973, respectively. The results show that the fusion model improves the prediction accuracy and model robustness, and the detection system can meet the needs of soil nutrient detection in farmland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
泅渡发布了新的文献求助10
1秒前
1秒前
香蕉觅云应助直率初露采纳,获得10
1秒前
包佳梁发布了新的文献求助10
1秒前
丘比特应助wuxunxun2015采纳,获得10
2秒前
2秒前
懒骨头兄应助JABBA采纳,获得10
3秒前
科研通AI6应助洁净雨采纳,获得10
3秒前
Iris完成签到,获得积分10
3秒前
等等有力气完成签到,获得积分10
4秒前
4秒前
兜兜发布了新的文献求助10
4秒前
Yuuuan完成签到,获得积分10
4秒前
刘家成发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
aldeheby应助闷声发采纳,获得10
7秒前
ljy1111发布了新的文献求助10
7秒前
7秒前
7秒前
泅渡完成签到,获得积分20
8秒前
vigor完成签到 ,获得积分10
8秒前
8秒前
9秒前
逗逗发布了新的文献求助10
9秒前
orixero应助Iris采纳,获得10
9秒前
9秒前
鹅鹅完成签到 ,获得积分10
9秒前
hard完成签到,获得积分10
10秒前
CocoGabrielle完成签到,获得积分10
10秒前
10秒前
的奖学金喜欢喜欢大呼小叫难受完成签到 ,获得积分10
11秒前
ABC的FGH发布了新的文献求助10
11秒前
11秒前
思源应助韩妙采纳,获得10
11秒前
研友_8yN60L完成签到,获得积分10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342