已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a vehicle-mounted soil organic matter detection system based on near-infrared spectroscopy and image information fusion

卷积神经网络 近红外光谱 光谱学 稳健性(进化) 人工智能 融合 均方误差 核(代数) 计算机科学 模式识别(心理学) 传感器融合 数学 材料科学 化学 物理 统计 光学 语言学 哲学 量子力学 生物化学 组合数学 基因
作者
Yong‐Yan Cao,Wei Yang,Hao Li,Hao Zhang,Minzan Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045501-045501 被引量:10
标识
DOI:10.1088/1361-6501/ad179f
摘要

Abstract In the practical application of farmland, the soil organic matter prediction model established by the traditional near-infrared (NIR) spectroscopy is affected by factors such as soil texture, which leads to a serious decline in the accuracy of the model. To improve the robustness and prediction accuracy of the model, a prediction model based on NIR spectroscopy and image fusion is proposed. A 1D-CNN organic matter prediction model (based on NIR spectroscopy) was established using eight characteristic wavelengths of extracted soil organic matter (932 nm, 999 nm, 1083 nm, 1191 nm, 1316 nm, 1356 nm, 1583 nm, and 1626 nm) as spectral information. A 2D -CNN organic matter prediction model was established using soil RGB images as information. Based on the idea of model weight fusion, 1D-CNN and 2D-CNN models are fused. When using small convolutional kernels (three-layer convolutional kernel size: 3*3, 1*1, 1*1) and 1D-CNN:2D-CNN = 6:4, the model has the highest prediction accuracy ( R 2 = 0.872). The optimal fusion model was embedded into the inspection system. The final laboratory and field testing results are as follows: under laboratory conditions, the detection accuracy R 2 of the 1D CNN prediction model, 2D-CNN prediction model, and fusion model are 0.838, 0.781, and 0.869, respectively. The root mean square error is 3.005, 3.546, and 2.678, respectively. The above experimental data indicates that the R 2 of the fused model is more accurate compared to the model established with a single information. In the field test, the R 2 detection accuracy of 1D-CNN prediction model, 2D-CNN prediction model and fusion model is 0.809, 0.731 and 0.835, respectively. The root mean square errors are 3.466, 3.828 and 2.973, respectively. The results show that the fusion model improves the prediction accuracy and model robustness, and the detection system can meet the needs of soil nutrient detection in farmland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇owao完成签到,获得积分10
1秒前
5秒前
小孙完成签到,获得积分10
5秒前
srx完成签到 ,获得积分10
6秒前
称心言完成签到 ,获得积分10
8秒前
kai chen完成签到 ,获得积分0
10秒前
碗碗完成签到,获得积分10
11秒前
xiaoxiao完成签到,获得积分10
11秒前
12秒前
13秒前
虚幻的楼房完成签到 ,获得积分10
13秒前
小马甲应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
成就凡双应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
成就凡双应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得30
15秒前
成就凡双应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
脑洞疼应助藤井树采纳,获得10
17秒前
Linson完成签到,获得积分0
19秒前
hh完成签到 ,获得积分10
19秒前
whoknowsname完成签到,获得积分10
20秒前
优美语梦完成签到 ,获得积分10
20秒前
20秒前
香蕉萝完成签到 ,获得积分10
20秒前
21秒前
萝卜关注了科研通微信公众号
25秒前
星星完成签到,获得积分10
27秒前
29秒前
30秒前
31秒前
腼腆的南晴完成签到 ,获得积分10
32秒前
慕青应助Davidjin采纳,获得30
34秒前
冷酷代玉完成签到 ,获得积分10
36秒前
复杂勒完成签到,获得积分10
38秒前
yuyu发布了新的文献求助10
39秒前
绿柏完成签到,获得积分10
39秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705435
求助须知:如何正确求助?哪些是违规求助? 5164132
关于积分的说明 15245526
捐赠科研通 4859289
什么是DOI,文献DOI怎么找? 2607711
邀请新用户注册赠送积分活动 1558849
关于科研通互助平台的介绍 1516399