Siamese Cooperative Learning for Unsupervised Image Reconstruction From Incomplete Measurements

人工智能 计算机科学 无监督学习 迭代重建 模式识别(心理学) 计算机视觉 图像(数学) 机器学习
作者
Yuhui Quan,Xinran Qin,Tongyao Pang,Hui Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (7): 4866-4879
标识
DOI:10.1109/tpami.2024.3359087
摘要

Image reconstruction from incomplete measurements is one basic task in imaging. While supervised deep learning has emerged as a powerful tool for image reconstruction in recent years, its applicability is limited by its prerequisite on a large number of latent images for model training. To extend the application of deep learning to the imaging tasks where acquisition of latent images is challenging, this paper proposes an unsupervised deep learning method that trains a deep model for image reconstruction with the access limited to measurement data. We develop a Siamese network whose twin sub-networks perform reconstruction cooperatively on a pair of complementary spaces: the null space of the measurement matrix and the range space of its pseudo inverse. The Siamese network is trained by a self-supervised loss with three terms: a data consistency loss over available measurements in the range space, a data consistency loss between intermediate results in the null space, and a mutual consistency loss on the predictions of the twin sub-networks in the full space. The proposed method is applied to four imaging tasks from different applications, and extensive experiments have shown its advantages over existing unsupervised solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恬恬完成签到,获得积分10
1秒前
1秒前
WUHUIWEN完成签到,获得积分10
1秒前
嘿嘿发布了新的文献求助10
2秒前
坚强亦丝应助拼搏的从霜采纳,获得10
2秒前
swordlee发布了新的文献求助10
2秒前
tiddler完成签到,获得积分10
2秒前
852应助等待煜城采纳,获得10
2秒前
大秦骑兵完成签到,获得积分10
2秒前
美人凝凝完成签到,获得积分10
2秒前
英勇皮皮虾完成签到,获得积分10
3秒前
3秒前
张张完成签到,获得积分10
3秒前
花痴的电灯泡完成签到,获得积分10
3秒前
淀粉肠沾番茄酱完成签到,获得积分20
3秒前
黑夜做着白日梦完成签到,获得积分0
4秒前
5秒前
wwxd完成签到,获得积分10
5秒前
口口完成签到 ,获得积分10
6秒前
水聿_pursuing_1完成签到,获得积分10
7秒前
科研通AI5应助dk采纳,获得10
7秒前
科研通AI5应助溪泉采纳,获得30
8秒前
jt完成签到,获得积分10
8秒前
9秒前
9秒前
尛瞐慶成完成签到,获得积分10
9秒前
zdy完成签到,获得积分10
9秒前
10秒前
上官若男应助000采纳,获得10
10秒前
阔落完成签到,获得积分10
10秒前
ding应助hehe采纳,获得10
11秒前
11秒前
11秒前
嘿嘿完成签到,获得积分20
11秒前
斯文的寒风举报zqw求助涉嫌违规
11秒前
兴奋大船完成签到,获得积分10
12秒前
灵巧高山应助五十八采纳,获得10
12秒前
12秒前
秀丽的冬瓜完成签到 ,获得积分10
12秒前
爆米花应助萧追命采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550859
求助须知:如何正确求助?哪些是违规求助? 3127173
关于积分的说明 9372741
捐赠科研通 2826359
什么是DOI,文献DOI怎么找? 1553691
邀请新用户注册赠送积分活动 725032
科研通“疑难数据库(出版商)”最低求助积分说明 714517