Optimizing machine learning models for predicting soil pH and total P in intact soil profiles with visible and near-infrared reflectance (VNIR) spectroscopy

VNIR公司 超参数 均方误差 超参数优化 决定系数 偏最小二乘回归 环境科学 支持向量机 数学 相关系数 线性回归 机器学习 人工智能 土壤科学 统计 高光谱成像 计算机科学 算法
作者
Shengxiang Xu,Yongcun Zhao,Yingyi Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:218: 108643-108643 被引量:17
标识
DOI:10.1016/j.compag.2024.108643
摘要

Machine learning (ML) models have recently been used in visible and near-infrared reflectance (VNIR) spectroscopy applications. However, the predictive performance of ML models is data-specific and depends strongly on the selected hyperparameters. This study aimed to test the hyperparameter optimization methods on the three ML models (cubist regression tree, Cubist; support vector machine regression, SVMR; and extreme gradient boosting, XGBoost) for predicting the soil pH and total phosphorus (TP) in intact soil profiles to a depth of 100 ± 5 cm. The VNIR spectra of nineteen intact soil profiles from several typical soil types in China were recorded. To determine the optimal hyperparameters of these ML models, a new Bayesian optimization (BO) strategy was introduced and compared to the standard grid search (GS) approach. The accuracy of the models was compared with the partial least squares regression (PLSR) model in terms of the root mean square error (RMSE), the coefficient of determination (R2), and Lin's concordance correlation coefficient (LCC). Overall, the results showed that the BO-based models performed similarly to the GS-based models for soil pH and TP predictions. However, the BO method was more efficient for tuning the hyperparameter values and had a considerably lower computational cost than the GS method. The tested ML models performed better than the PLSR models in all cases. Among the three ML techniques, the SVMR model achieved the best performance in terms of predicting soil pH and TP. When the SVMR model was used on the testing set, the RMSE and R2 for soil pH were 0.26–0.27 and 0.97, respectively, while those for TP were 0.06 g kg−1 and 0.85–0.87, respectively. Both soil properties were predicted with excellent agreement (LCC ≥ 0.92). It can be concluded that the SVMR model coupled with the BO method is suitable for accurately predicting soil pH and TP in intact soil profiles with VNIR spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心凝莲发布了新的文献求助10
1秒前
2秒前
daoye发布了新的文献求助10
4秒前
4秒前
4秒前
HONGYE发布了新的文献求助20
5秒前
眼睛大的芷珊完成签到 ,获得积分10
6秒前
开心初阳完成签到,获得积分10
6秒前
6秒前
小二完成签到,获得积分10
7秒前
7秒前
10秒前
11秒前
zzww发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得30
13秒前
科目三应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
MchemG应助科研通管家采纳,获得30
13秒前
JamesPei应助计算机采纳,获得10
13秒前
13秒前
15秒前
15秒前
Atopos完成签到,获得积分10
15秒前
15秒前
在水一方应助猪猪hero采纳,获得10
15秒前
16秒前
licrazy发布了新的文献求助10
16秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384679
求助须知:如何正确求助?哪些是违规求助? 4507461
关于积分的说明 14028131
捐赠科研通 4417171
什么是DOI,文献DOI怎么找? 2426330
邀请新用户注册赠送积分活动 1419077
关于科研通互助平台的介绍 1397405