Optimizing machine learning models for predicting soil pH and total P in intact soil profiles with visible and near-infrared reflectance (VNIR) spectroscopy

VNIR公司 超参数 均方误差 超参数优化 决定系数 偏最小二乘回归 环境科学 支持向量机 数学 相关系数 线性回归 机器学习 人工智能 土壤科学 统计 高光谱成像 计算机科学 算法
作者
Shengxiang Xu,Yongcun Zhao,Yingyi Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108643-108643 被引量:17
标识
DOI:10.1016/j.compag.2024.108643
摘要

Machine learning (ML) models have recently been used in visible and near-infrared reflectance (VNIR) spectroscopy applications. However, the predictive performance of ML models is data-specific and depends strongly on the selected hyperparameters. This study aimed to test the hyperparameter optimization methods on the three ML models (cubist regression tree, Cubist; support vector machine regression, SVMR; and extreme gradient boosting, XGBoost) for predicting the soil pH and total phosphorus (TP) in intact soil profiles to a depth of 100 ± 5 cm. The VNIR spectra of nineteen intact soil profiles from several typical soil types in China were recorded. To determine the optimal hyperparameters of these ML models, a new Bayesian optimization (BO) strategy was introduced and compared to the standard grid search (GS) approach. The accuracy of the models was compared with the partial least squares regression (PLSR) model in terms of the root mean square error (RMSE), the coefficient of determination (R2), and Lin's concordance correlation coefficient (LCC). Overall, the results showed that the BO-based models performed similarly to the GS-based models for soil pH and TP predictions. However, the BO method was more efficient for tuning the hyperparameter values and had a considerably lower computational cost than the GS method. The tested ML models performed better than the PLSR models in all cases. Among the three ML techniques, the SVMR model achieved the best performance in terms of predicting soil pH and TP. When the SVMR model was used on the testing set, the RMSE and R2 for soil pH were 0.26–0.27 and 0.97, respectively, while those for TP were 0.06 g kg−1 and 0.85–0.87, respectively. Both soil properties were predicted with excellent agreement (LCC ≥ 0.92). It can be concluded that the SVMR model coupled with the BO method is suitable for accurately predicting soil pH and TP in intact soil profiles with VNIR spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长举报量子星尘求助涉嫌违规
1秒前
一颗小花生完成签到,获得积分10
2秒前
2秒前
吴雨茜发布了新的文献求助10
2秒前
Neo完成签到,获得积分10
3秒前
LDX发布了新的文献求助10
3秒前
浮游应助愉快的定帮采纳,获得10
3秒前
stars完成签到 ,获得积分10
5秒前
HeAuBook举报老陌求助涉嫌违规
5秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI6应助晓逗B哟采纳,获得10
8秒前
chenjun7080发布了新的文献求助10
8秒前
恋如雪止完成签到,获得积分10
9秒前
9秒前
偌佟完成签到,获得积分10
9秒前
研友_84WJXZ发布了新的文献求助30
10秒前
健壮诗桃完成签到,获得积分10
10秒前
dalin发布了新的文献求助10
12秒前
khwafdoih完成签到,获得积分20
14秒前
14秒前
lwh104完成签到,获得积分0
16秒前
无语的沛春完成签到,获得积分10
16秒前
研友_84WJXZ完成签到,获得积分10
16秒前
16秒前
psylin发布了新的文献求助10
17秒前
虚惊一场发布了新的文献求助10
17秒前
君小伦完成签到,获得积分10
17秒前
可可完成签到,获得积分10
17秒前
18秒前
Abathur完成签到 ,获得积分10
18秒前
生动的不尤完成签到,获得积分10
19秒前
khwafdoih发布了新的文献求助10
20秒前
22秒前
23秒前
英姑应助不二子采纳,获得30
23秒前
wuhuhu发布了新的文献求助10
24秒前
若空行走发布了新的文献求助20
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4907686
求助须知:如何正确求助?哪些是违规求助? 4184596
关于积分的说明 12994737
捐赠科研通 3951119
什么是DOI,文献DOI怎么找? 2166819
邀请新用户注册赠送积分活动 1185410
关于科研通互助平台的介绍 1091841