Automatic weld joint type recognition in intelligent welding using image features and machine learning algorithms

焊接 人工智能 机器人焊接 计算机科学 支持向量机 机器人 人工神经网络 特征提取 特征(语言学) 联营 模式识别(心理学) 机器学习 计算机视觉 算法 工程类 机械工程 语言学 哲学
作者
Satish Sonwane,Shital S. Chiddarwar
出处
期刊:Artificial intelligence for engineering design, analysis and manufacturing [Cambridge University Press]
卷期号:37 被引量:1
标识
DOI:10.1017/s0890060423000227
摘要

Abstract Welding is the most basic and widely used manufacturing process. Intelligent robotic welding is an area that has received much consideration owing to the widespread use of robots in welding operations. With the dawn of Industry 4.0, machine learning is substantially developing to alleviate issues around applying robotic welding intelligently. Identifying the correct weld joint type is essential for intelligent robotic welding. It affects the quality of the weldment and impacts the per-unit cost. The robot controller must change different welding parameters per joint type to attain the desired weld quality. This article presents an approach that uses image features like edges, corners, and blobs to identify different weld joint types using machine learning algorithms. Feature extractors perform the task of feature extraction. The feature extractor choice is crucial for accurate weld joint identification. The present study compares the performance of five feature extractors, namely (1) Histogram of gradients, (2) Local binary pattern, (3) ReLU3 layer, (4) ReLU4 layer, and (5) Pooling layer of ResNet18 Neural network applied to classifiers like Support Vector machines, K -Nearest Neighbor and Decision trees. We trained and tested the proposed model using the Kaggle Weld joint dataset (for Butt and Fillet Joints) and our in-house dataset (for Vee, lap, and corner joints). The experimental findings show that out of the 15 models, the pre-trained ResNet18 feature extractor with an Support Vector Machines classifier has excellent performance with a threefold recognition accuracy of 98.74% for the mentioned dataset with a computation time of 31 ms per image.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
babe完成签到 ,获得积分10
刚刚
1秒前
69发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
5秒前
Siris完成签到,获得积分10
6秒前
11发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
呆萌芙蓉发布了新的文献求助10
9秒前
10秒前
小蘑菇应助Kannan采纳,获得10
13秒前
13秒前
西音完成签到,获得积分10
13秒前
李麟发布了新的文献求助10
14秒前
jie367发布了新的文献求助30
14秒前
16秒前
17秒前
科研通AI5应助凳凳子采纳,获得10
18秒前
Selonfer发布了新的文献求助30
19秒前
Lucas应助宋宋采纳,获得10
21秒前
脑洞疼应助李麟采纳,获得10
21秒前
爆米花应助jie367采纳,获得10
22秒前
小牛俊完成签到,获得积分10
22秒前
科研通AI5应助清清旋雪采纳,获得10
23秒前
JamesPei应助淡淡的冥茗采纳,获得10
23秒前
小二郎应助阿邱采纳,获得10
24秒前
kkkkkkk发布了新的文献求助10
24秒前
24秒前
在水一方应助69采纳,获得10
24秒前
聪明的青寒完成签到 ,获得积分10
25秒前
26秒前
shine完成签到 ,获得积分10
27秒前
27秒前
Selonfer完成签到,获得积分10
27秒前
冷静靖荷应助李荷花采纳,获得10
27秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589247
求助须知:如何正确求助?哪些是违规求助? 3157571
关于积分的说明 9516003
捐赠科研通 2860423
什么是DOI,文献DOI怎么找? 1571808
邀请新用户注册赠送积分活动 737505
科研通“疑难数据库(出版商)”最低求助积分说明 722293