A reversible natural language watermarking for sensitive information protection

数字水印 计算机科学 自然(考古学) 自然语言 信息保护政策 计算机安全 自然语言处理 人工智能 地质学 古生物学 图像(数学)
作者
Lingyun Xiang,Yangfan Liu,Zhongliang Yang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103661-103661
标识
DOI:10.1016/j.ipm.2024.103661
摘要

Existing methods have evolved from using synonym substitution to incorporating arbitrary word substitution to achieve reversible natural language watermarking. However, a notable limitation is that they are prone to overlook the sensitivity of information associated with the original words, with a tendency to prefer non-sensitive words for substitution. As a result, a potential risk of sensitive information leakage contained in the original text is posed. Furthermore, while aiming for reversibility, the overall performance of the watermarking method may be inadvertently compromised. In response to the above problems, this paper puts forward a novel reversible natural language watermarking method that combines a Keyword Substitution scheme and a Prediction Error Expansion algorithm (KSPEE) to protect sensitive information, verify content integrity, protect copyright, and so on. Specifically, KSPEE leverages a keyword extraction algorithm to identify important content containing sensitive information in the original text, thereby determining the potential positions for watermark information embedding. Subsequently, a masked language model is utilized to predict appropriate substitution words based on the surrounding semantic information of the embedding position. In addition, the prediction error expansion algorithm is employed to select appropriate words for substituting the original keywords, ensuring the successful embedding of watermark information while maintaining the recoverability of the original keywords. By identifying keywords and substituting them, a suitable method of protecting the original sensitive information is provided. Extensive experiments demonstrate that, under the promise of semantic distortion and lossless restoration of the original content, the proposed method KSPEE achieves outstanding watermarked text quality. A higher watermark embedding rate is achieved and strong security is shown by KSPEE. More importantly, KSPEE effectively prevents the leakage of sensitive information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨旺发布了新的文献求助10
1秒前
sunny完成签到 ,获得积分10
1秒前
ck关闭了ck文献求助
2秒前
Majoe完成签到,获得积分10
3秒前
3秒前
高大的雁桃完成签到 ,获得积分10
4秒前
领导范儿应助布丁采纳,获得10
5秒前
5秒前
科研通AI6应助Avery采纳,获得10
6秒前
科研通AI6应助Avery采纳,获得10
6秒前
桐桐应助Avery采纳,获得10
6秒前
爆米花应助Avery采纳,获得10
6秒前
Orange应助Avery采纳,获得10
6秒前
丘比特应助Avery采纳,获得10
6秒前
李健的小迷弟应助Avery采纳,获得10
6秒前
斯文败类应助Avery采纳,获得10
6秒前
完美世界应助Avery采纳,获得10
6秒前
我是老大应助Avery采纳,获得10
6秒前
wrx完成签到 ,获得积分10
6秒前
7秒前
feifanyin发布了新的文献求助30
8秒前
wei发布了新的文献求助10
8秒前
swy完成签到 ,获得积分10
9秒前
今后应助有怀采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
JamesPei应助可靠飞飞采纳,获得10
11秒前
ting完成签到,获得积分10
11秒前
zhang17732207429完成签到,获得积分10
12秒前
懒羊羊带妹呢完成签到 ,获得积分10
12秒前
基金中中中完成签到,获得积分10
12秒前
滴滴滴完成签到 ,获得积分20
13秒前
13秒前
spencer完成签到,获得积分10
13秒前
无极微光应助www采纳,获得20
14秒前
ck发布了新的文献求助10
14秒前
15秒前
丘比特应助wei采纳,获得10
16秒前
布丁发布了新的文献求助10
16秒前
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620844
求助须知:如何正确求助?哪些是违规求助? 4705469
关于积分的说明 14932123
捐赠科研通 4763548
什么是DOI,文献DOI怎么找? 2551284
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474712