A reversible natural language watermarking for sensitive information protection

数字水印 计算机科学 自然(考古学) 自然语言 信息保护政策 计算机安全 自然语言处理 人工智能 地质学 古生物学 图像(数学)
作者
Lingyun Xiang,Yangfan Liu,Zhongliang Yang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103661-103661
标识
DOI:10.1016/j.ipm.2024.103661
摘要

Existing methods have evolved from using synonym substitution to incorporating arbitrary word substitution to achieve reversible natural language watermarking. However, a notable limitation is that they are prone to overlook the sensitivity of information associated with the original words, with a tendency to prefer non-sensitive words for substitution. As a result, a potential risk of sensitive information leakage contained in the original text is posed. Furthermore, while aiming for reversibility, the overall performance of the watermarking method may be inadvertently compromised. In response to the above problems, this paper puts forward a novel reversible natural language watermarking method that combines a Keyword Substitution scheme and a Prediction Error Expansion algorithm (KSPEE) to protect sensitive information, verify content integrity, protect copyright, and so on. Specifically, KSPEE leverages a keyword extraction algorithm to identify important content containing sensitive information in the original text, thereby determining the potential positions for watermark information embedding. Subsequently, a masked language model is utilized to predict appropriate substitution words based on the surrounding semantic information of the embedding position. In addition, the prediction error expansion algorithm is employed to select appropriate words for substituting the original keywords, ensuring the successful embedding of watermark information while maintaining the recoverability of the original keywords. By identifying keywords and substituting them, a suitable method of protecting the original sensitive information is provided. Extensive experiments demonstrate that, under the promise of semantic distortion and lossless restoration of the original content, the proposed method KSPEE achieves outstanding watermarked text quality. A higher watermark embedding rate is achieved and strong security is shown by KSPEE. More importantly, KSPEE effectively prevents the leakage of sensitive information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助张鹤馨采纳,获得20
刚刚
Dean应助泊声采纳,获得30
1秒前
1秒前
1秒前
1秒前
小吴同学完成签到,获得积分10
2秒前
3秒前
CipherSage应助冷艳短靴采纳,获得10
3秒前
4秒前
4秒前
5秒前
6秒前
6秒前
bmhs2017应助萌only采纳,获得10
7秒前
7秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
7秒前
ssy发布了新的文献求助10
7秒前
8秒前
呆萌念云发布了新的文献求助10
8秒前
9秒前
neurist发布了新的文献求助10
9秒前
kong发布了新的文献求助10
10秒前
泡泡熊不吐泡泡完成签到 ,获得积分10
10秒前
慵懒发布了新的文献求助10
10秒前
FashionBoy应助小琳子才是我采纳,获得10
11秒前
11秒前
正直的如凡完成签到,获得积分10
12秒前
无花果应助无语的乌鸦采纳,获得10
12秒前
bmhs2017应助昌莆采纳,获得10
13秒前
科研通AI6应助果子采纳,获得10
14秒前
墨翟发布了新的文献求助10
14秒前
14秒前
年轻凌瑶完成签到,获得积分20
14秒前
15秒前
开朗涔发布了新的文献求助10
15秒前
朱朱发布了新的文献求助30
15秒前
lr完成签到,获得积分10
16秒前
锅巴完成签到,获得积分10
16秒前
爆米花应助糟糕的雁菱采纳,获得10
16秒前
可爱的函函应助CamkidDeng采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393801
求助须知:如何正确求助?哪些是违规求助? 4515106
关于积分的说明 14052738
捐赠科研通 4426288
什么是DOI,文献DOI怎么找? 2431263
邀请新用户注册赠送积分活动 1423445
关于科研通互助平台的介绍 1402505