A reversible natural language watermarking for sensitive information protection

数字水印 计算机科学 自然(考古学) 自然语言 信息保护政策 计算机安全 自然语言处理 人工智能 地质学 古生物学 图像(数学)
作者
Lingyun Xiang,Yangfan Liu,Zhongliang Yang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103661-103661
标识
DOI:10.1016/j.ipm.2024.103661
摘要

Existing methods have evolved from using synonym substitution to incorporating arbitrary word substitution to achieve reversible natural language watermarking. However, a notable limitation is that they are prone to overlook the sensitivity of information associated with the original words, with a tendency to prefer non-sensitive words for substitution. As a result, a potential risk of sensitive information leakage contained in the original text is posed. Furthermore, while aiming for reversibility, the overall performance of the watermarking method may be inadvertently compromised. In response to the above problems, this paper puts forward a novel reversible natural language watermarking method that combines a Keyword Substitution scheme and a Prediction Error Expansion algorithm (KSPEE) to protect sensitive information, verify content integrity, protect copyright, and so on. Specifically, KSPEE leverages a keyword extraction algorithm to identify important content containing sensitive information in the original text, thereby determining the potential positions for watermark information embedding. Subsequently, a masked language model is utilized to predict appropriate substitution words based on the surrounding semantic information of the embedding position. In addition, the prediction error expansion algorithm is employed to select appropriate words for substituting the original keywords, ensuring the successful embedding of watermark information while maintaining the recoverability of the original keywords. By identifying keywords and substituting them, a suitable method of protecting the original sensitive information is provided. Extensive experiments demonstrate that, under the promise of semantic distortion and lossless restoration of the original content, the proposed method KSPEE achieves outstanding watermarked text quality. A higher watermark embedding rate is achieved and strong security is shown by KSPEE. More importantly, KSPEE effectively prevents the leakage of sensitive information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖虎完成签到 ,获得积分10
4秒前
4秒前
默默善愁发布了新的文献求助10
6秒前
SciGPT应助郑啊哈采纳,获得10
7秒前
哈哈哈哈完成签到,获得积分10
8秒前
10秒前
10秒前
zhou_完成签到,获得积分10
10秒前
无痕发布了新的文献求助50
11秒前
乌龟娟完成签到,获得积分10
11秒前
所所应助默默善愁采纳,获得10
13秒前
是我发布了新的文献求助10
14秒前
Bin_Liu发布了新的文献求助10
14秒前
15秒前
英俊的铭应助lmy1234QAQ采纳,获得10
15秒前
15秒前
Jane发布了新的文献求助30
16秒前
weiyi完成签到,获得积分10
16秒前
momo完成签到,获得积分10
20秒前
20秒前
852应助CHANYEOL采纳,获得10
21秒前
科研通AI2S应助weiyi采纳,获得10
21秒前
路弈发布了新的文献求助10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
浮游应助天真亦旋采纳,获得10
22秒前
郑啊哈发布了新的文献求助10
23秒前
无为完成签到,获得积分10
24秒前
努力搬砖发布了新的文献求助30
26秒前
舒适可乐完成签到,获得积分10
28秒前
华仔应助夏飞飞采纳,获得10
29秒前
田様应助zhl采纳,获得30
30秒前
30秒前
31秒前
hchnb1234发布了新的文献求助10
34秒前
12完成签到,获得积分10
35秒前
CHANYEOL发布了新的文献求助10
35秒前
在水一方应助WQ采纳,获得10
36秒前
科目三应助张张采纳,获得10
38秒前
Lucas应助你好采纳,获得10
39秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457707
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292772
捐赠科研通 4488694
什么是DOI,文献DOI怎么找? 2458676
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343