A reversible natural language watermarking for sensitive information protection

数字水印 计算机科学 自然(考古学) 自然语言 信息保护政策 计算机安全 自然语言处理 人工智能 地质学 古生物学 图像(数学)
作者
Lingyun Xiang,Yangfan Liu,Zhongliang Yang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103661-103661
标识
DOI:10.1016/j.ipm.2024.103661
摘要

Existing methods have evolved from using synonym substitution to incorporating arbitrary word substitution to achieve reversible natural language watermarking. However, a notable limitation is that they are prone to overlook the sensitivity of information associated with the original words, with a tendency to prefer non-sensitive words for substitution. As a result, a potential risk of sensitive information leakage contained in the original text is posed. Furthermore, while aiming for reversibility, the overall performance of the watermarking method may be inadvertently compromised. In response to the above problems, this paper puts forward a novel reversible natural language watermarking method that combines a Keyword Substitution scheme and a Prediction Error Expansion algorithm (KSPEE) to protect sensitive information, verify content integrity, protect copyright, and so on. Specifically, KSPEE leverages a keyword extraction algorithm to identify important content containing sensitive information in the original text, thereby determining the potential positions for watermark information embedding. Subsequently, a masked language model is utilized to predict appropriate substitution words based on the surrounding semantic information of the embedding position. In addition, the prediction error expansion algorithm is employed to select appropriate words for substituting the original keywords, ensuring the successful embedding of watermark information while maintaining the recoverability of the original keywords. By identifying keywords and substituting them, a suitable method of protecting the original sensitive information is provided. Extensive experiments demonstrate that, under the promise of semantic distortion and lossless restoration of the original content, the proposed method KSPEE achieves outstanding watermarked text quality. A higher watermark embedding rate is achieved and strong security is shown by KSPEE. More importantly, KSPEE effectively prevents the leakage of sensitive information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
niko发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
哒哒李完成签到,获得积分10
3秒前
在水一方应助李璇采纳,获得10
3秒前
起风了发布了新的文献求助20
4秒前
十二完成签到 ,获得积分10
4秒前
豆芽菜发布了新的文献求助10
4秒前
菠萝Vicky发布了新的文献求助10
4秒前
tangzanwayne发布了新的文献求助10
5秒前
肖123发布了新的文献求助10
5秒前
汉堡包应助jj采纳,获得30
6秒前
mono发布了新的文献求助10
6秒前
浮游应助怡然蜻蜓采纳,获得10
6秒前
6秒前
liu发布了新的文献求助10
6秒前
6秒前
上官若男应助梦漓采纳,获得10
6秒前
7秒前
paopao完成签到 ,获得积分10
7秒前
防冻发布了新的文献求助30
7秒前
英姑应助ikea1984采纳,获得10
8秒前
luoxu关注了科研通微信公众号
9秒前
Hazel完成签到 ,获得积分10
10秒前
yo一天发布了新的文献求助10
10秒前
Jiygua发布了新的文献求助10
10秒前
YY发布了新的文献求助10
10秒前
郭京京完成签到 ,获得积分10
10秒前
郝丽娜完成签到,获得积分20
10秒前
Owen应助跳跃的曼荷采纳,获得10
11秒前
万能图书馆应助青山采纳,获得10
12秒前
sss驳回了情怀应助
12秒前
13秒前
13秒前
仔仔发布了新的文献求助20
13秒前
大神仙发布了新的文献求助30
13秒前
张瑞锋完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513467
求助须知:如何正确求助?哪些是违规求助? 4607711
关于积分的说明 14506524
捐赠科研通 4543256
什么是DOI,文献DOI怎么找? 2489480
邀请新用户注册赠送积分活动 1471450
关于科研通互助平台的介绍 1443447