A reversible natural language watermarking for sensitive information protection

数字水印 计算机科学 自然(考古学) 自然语言 信息保护政策 计算机安全 自然语言处理 人工智能 地质学 古生物学 图像(数学)
作者
Lingyun Xiang,Yangfan Liu,Zhongliang Yang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103661-103661
标识
DOI:10.1016/j.ipm.2024.103661
摘要

Existing methods have evolved from using synonym substitution to incorporating arbitrary word substitution to achieve reversible natural language watermarking. However, a notable limitation is that they are prone to overlook the sensitivity of information associated with the original words, with a tendency to prefer non-sensitive words for substitution. As a result, a potential risk of sensitive information leakage contained in the original text is posed. Furthermore, while aiming for reversibility, the overall performance of the watermarking method may be inadvertently compromised. In response to the above problems, this paper puts forward a novel reversible natural language watermarking method that combines a Keyword Substitution scheme and a Prediction Error Expansion algorithm (KSPEE) to protect sensitive information, verify content integrity, protect copyright, and so on. Specifically, KSPEE leverages a keyword extraction algorithm to identify important content containing sensitive information in the original text, thereby determining the potential positions for watermark information embedding. Subsequently, a masked language model is utilized to predict appropriate substitution words based on the surrounding semantic information of the embedding position. In addition, the prediction error expansion algorithm is employed to select appropriate words for substituting the original keywords, ensuring the successful embedding of watermark information while maintaining the recoverability of the original keywords. By identifying keywords and substituting them, a suitable method of protecting the original sensitive information is provided. Extensive experiments demonstrate that, under the promise of semantic distortion and lossless restoration of the original content, the proposed method KSPEE achieves outstanding watermarked text quality. A higher watermark embedding rate is achieved and strong security is shown by KSPEE. More importantly, KSPEE effectively prevents the leakage of sensitive information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
1秒前
1秒前
2秒前
大表哥发布了新的文献求助50
2秒前
苗条青槐发布了新的文献求助10
3秒前
4秒前
文静灵阳发布了新的文献求助10
4秒前
范yx发布了新的文献求助10
4秒前
jiangjiang完成签到,获得积分10
5秒前
ss发布了新的文献求助10
6秒前
7秒前
tytyty完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Xhnz发布了新的文献求助10
8秒前
诶嘿发布了新的文献求助10
8秒前
淡定的太清完成签到,获得积分10
8秒前
8秒前
我是老大应助玥来玥好采纳,获得10
9秒前
默默的素阴完成签到,获得积分10
9秒前
乐乐应助秋林采纳,获得10
11秒前
慕青应助默默半鬼采纳,获得10
12秒前
内向的稀完成签到,获得积分10
13秒前
落后翠柏发布了新的文献求助30
14秒前
MMP完成签到,获得积分10
14秒前
小卢卢快闭嘴完成签到,获得积分10
15秒前
16秒前
卡皮巴拉完成签到,获得积分10
17秒前
19秒前
南念关注了科研通微信公众号
20秒前
玥来玥好发布了新的文献求助10
21秒前
bb完成签到 ,获得积分20
22秒前
谈伟完成签到,获得积分20
23秒前
谈伟发布了新的文献求助10
27秒前
赘婿应助炙热的香芦采纳,获得10
29秒前
clyhg完成签到,获得积分10
29秒前
31秒前
31秒前
32秒前
彩虹发布了新的文献求助10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744116
关于积分的说明 15000277
捐赠科研通 4796029
什么是DOI,文献DOI怎么找? 2562260
邀请新用户注册赠送积分活动 1521810
关于科研通互助平台的介绍 1481704