A reversible natural language watermarking for sensitive information protection

数字水印 计算机科学 自然(考古学) 自然语言 信息保护政策 计算机安全 自然语言处理 人工智能 地质学 古生物学 图像(数学)
作者
Lingyun Xiang,Yangfan Liu,Zhongliang Yang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103661-103661
标识
DOI:10.1016/j.ipm.2024.103661
摘要

Existing methods have evolved from using synonym substitution to incorporating arbitrary word substitution to achieve reversible natural language watermarking. However, a notable limitation is that they are prone to overlook the sensitivity of information associated with the original words, with a tendency to prefer non-sensitive words for substitution. As a result, a potential risk of sensitive information leakage contained in the original text is posed. Furthermore, while aiming for reversibility, the overall performance of the watermarking method may be inadvertently compromised. In response to the above problems, this paper puts forward a novel reversible natural language watermarking method that combines a Keyword Substitution scheme and a Prediction Error Expansion algorithm (KSPEE) to protect sensitive information, verify content integrity, protect copyright, and so on. Specifically, KSPEE leverages a keyword extraction algorithm to identify important content containing sensitive information in the original text, thereby determining the potential positions for watermark information embedding. Subsequently, a masked language model is utilized to predict appropriate substitution words based on the surrounding semantic information of the embedding position. In addition, the prediction error expansion algorithm is employed to select appropriate words for substituting the original keywords, ensuring the successful embedding of watermark information while maintaining the recoverability of the original keywords. By identifying keywords and substituting them, a suitable method of protecting the original sensitive information is provided. Extensive experiments demonstrate that, under the promise of semantic distortion and lossless restoration of the original content, the proposed method KSPEE achieves outstanding watermarked text quality. A higher watermark embedding rate is achieved and strong security is shown by KSPEE. More importantly, KSPEE effectively prevents the leakage of sensitive information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助文右三采纳,获得10
刚刚
优秀思卉发布了新的文献求助30
1秒前
2秒前
冯前浪完成签到,获得积分20
3秒前
木木木发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
QDU应助第五个完全数采纳,获得20
6秒前
tiptip应助李里哩采纳,获得10
7秒前
SciGPT应助李里哩采纳,获得10
7秒前
7秒前
周繁发布了新的文献求助10
7秒前
优秀思卉完成签到,获得积分10
7秒前
大气的苠完成签到,获得积分10
8秒前
Hello应助科研鲁宾孙采纳,获得10
8秒前
赘婿应助冯前浪采纳,获得30
9秒前
ZJFL发布了新的文献求助10
9秒前
9秒前
酒剑仙完成签到,获得积分10
10秒前
一一发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
13秒前
Auditor发布了新的文献求助10
14秒前
CodeCraft应助帅气航空采纳,获得10
15秒前
15秒前
Awei完成签到,获得积分10
16秒前
小桶爸爸发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
今后应助早睡早起的安采纳,获得30
18秒前
zhou发布了新的文献求助10
19秒前
20秒前
20秒前
微凉完成签到 ,获得积分10
20秒前
huhu发布了新的文献求助10
22秒前
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978