A reversible natural language watermarking for sensitive information protection

数字水印 计算机科学 自然(考古学) 自然语言 信息保护政策 计算机安全 自然语言处理 人工智能 地质学 古生物学 图像(数学)
作者
Lingyun Xiang,Yangfan Liu,Zhongliang Yang
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:61 (3): 103661-103661
标识
DOI:10.1016/j.ipm.2024.103661
摘要

Existing methods have evolved from using synonym substitution to incorporating arbitrary word substitution to achieve reversible natural language watermarking. However, a notable limitation is that they are prone to overlook the sensitivity of information associated with the original words, with a tendency to prefer non-sensitive words for substitution. As a result, a potential risk of sensitive information leakage contained in the original text is posed. Furthermore, while aiming for reversibility, the overall performance of the watermarking method may be inadvertently compromised. In response to the above problems, this paper puts forward a novel reversible natural language watermarking method that combines a Keyword Substitution scheme and a Prediction Error Expansion algorithm (KSPEE) to protect sensitive information, verify content integrity, protect copyright, and so on. Specifically, KSPEE leverages a keyword extraction algorithm to identify important content containing sensitive information in the original text, thereby determining the potential positions for watermark information embedding. Subsequently, a masked language model is utilized to predict appropriate substitution words based on the surrounding semantic information of the embedding position. In addition, the prediction error expansion algorithm is employed to select appropriate words for substituting the original keywords, ensuring the successful embedding of watermark information while maintaining the recoverability of the original keywords. By identifying keywords and substituting them, a suitable method of protecting the original sensitive information is provided. Extensive experiments demonstrate that, under the promise of semantic distortion and lossless restoration of the original content, the proposed method KSPEE achieves outstanding watermarked text quality. A higher watermark embedding rate is achieved and strong security is shown by KSPEE. More importantly, KSPEE effectively prevents the leakage of sensitive information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助岳岳岳采纳,获得10
1秒前
华仔应助端庄的小蝴蝶采纳,获得10
2秒前
4秒前
打打应助内向的小脑采纳,获得10
4秒前
轻松的语海完成签到,获得积分10
7秒前
7秒前
8秒前
hhhhhhhh发布了新的文献求助10
9秒前
延胡索发布了新的文献求助10
9秒前
10秒前
科研通AI5应助xu采纳,获得30
12秒前
13秒前
13秒前
青青完成签到,获得积分10
13秒前
wuming发布了新的文献求助10
13秒前
lgy发布了新的文献求助10
14秒前
李健应助nnnd77采纳,获得10
16秒前
17秒前
ZMYI完成签到,获得积分10
17秒前
17秒前
周舟完成签到 ,获得积分10
17秒前
岳岳岳发布了新的文献求助10
19秒前
研友_n0kjPL完成签到,获得积分0
20秒前
20秒前
20秒前
Dai关注了科研通微信公众号
20秒前
英勇的飞扬完成签到,获得积分10
21秒前
21秒前
无花果应助延胡索采纳,获得10
21秒前
上官若男应助WW采纳,获得10
21秒前
斯文败类应助露西亚采纳,获得10
21秒前
幽默天真发布了新的文献求助100
21秒前
21秒前
平安喜乐完成签到 ,获得积分10
22秒前
23秒前
小二郎应助蓝海采纳,获得10
23秒前
23秒前
Jasper应助youngcy采纳,获得10
24秒前
24秒前
员艳宁发布了新的文献求助30
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4916187
求助须知:如何正确求助?哪些是违规求助? 4189726
关于积分的说明 13012119
捐赠科研通 3959063
什么是DOI,文献DOI怎么找? 2170518
邀请新用户注册赠送积分活动 1188698
关于科研通互助平台的介绍 1096671