A reversible natural language watermarking for sensitive information protection

数字水印 计算机科学 自然(考古学) 自然语言 信息保护政策 计算机安全 自然语言处理 人工智能 地质学 古生物学 图像(数学)
作者
Lingyun Xiang,Yangfan Liu,Zhongliang Yang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103661-103661
标识
DOI:10.1016/j.ipm.2024.103661
摘要

Existing methods have evolved from using synonym substitution to incorporating arbitrary word substitution to achieve reversible natural language watermarking. However, a notable limitation is that they are prone to overlook the sensitivity of information associated with the original words, with a tendency to prefer non-sensitive words for substitution. As a result, a potential risk of sensitive information leakage contained in the original text is posed. Furthermore, while aiming for reversibility, the overall performance of the watermarking method may be inadvertently compromised. In response to the above problems, this paper puts forward a novel reversible natural language watermarking method that combines a Keyword Substitution scheme and a Prediction Error Expansion algorithm (KSPEE) to protect sensitive information, verify content integrity, protect copyright, and so on. Specifically, KSPEE leverages a keyword extraction algorithm to identify important content containing sensitive information in the original text, thereby determining the potential positions for watermark information embedding. Subsequently, a masked language model is utilized to predict appropriate substitution words based on the surrounding semantic information of the embedding position. In addition, the prediction error expansion algorithm is employed to select appropriate words for substituting the original keywords, ensuring the successful embedding of watermark information while maintaining the recoverability of the original keywords. By identifying keywords and substituting them, a suitable method of protecting the original sensitive information is provided. Extensive experiments demonstrate that, under the promise of semantic distortion and lossless restoration of the original content, the proposed method KSPEE achieves outstanding watermarked text quality. A higher watermark embedding rate is achieved and strong security is shown by KSPEE. More importantly, KSPEE effectively prevents the leakage of sensitive information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风起云涌完成签到,获得积分10
刚刚
1秒前
Au完成签到,获得积分10
1秒前
落后的嚣发布了新的文献求助10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
儒雅的蜜粉完成签到,获得积分10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
王先生账号完成签到,获得积分10
2秒前
1101592875应助科研通管家采纳,获得10
2秒前
Orange应助123采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
3秒前
简单小懒虫完成签到 ,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
天天快乐应助fubi采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
棋士应助科研通管家采纳,获得10
3秒前
现代大神完成签到,获得积分10
3秒前
1101592875应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得80
4秒前
科研通AI6.1应助吴帆采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
丘比特应助韦韦采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得30
4秒前
烟花应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
1101592875应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
gy应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733747
求助须知:如何正确求助?哪些是违规求助? 5350934
关于积分的说明 15325244
捐赠科研通 4878769
什么是DOI,文献DOI怎么找? 2621401
邀请新用户注册赠送积分活动 1570515
关于科研通互助平台的介绍 1527476