亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A reversible natural language watermarking for sensitive information protection

数字水印 计算机科学 自然(考古学) 自然语言 信息保护政策 计算机安全 自然语言处理 人工智能 地质学 古生物学 图像(数学)
作者
Lingyun Xiang,Yangfan Liu,Zhongliang Yang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103661-103661
标识
DOI:10.1016/j.ipm.2024.103661
摘要

Existing methods have evolved from using synonym substitution to incorporating arbitrary word substitution to achieve reversible natural language watermarking. However, a notable limitation is that they are prone to overlook the sensitivity of information associated with the original words, with a tendency to prefer non-sensitive words for substitution. As a result, a potential risk of sensitive information leakage contained in the original text is posed. Furthermore, while aiming for reversibility, the overall performance of the watermarking method may be inadvertently compromised. In response to the above problems, this paper puts forward a novel reversible natural language watermarking method that combines a Keyword Substitution scheme and a Prediction Error Expansion algorithm (KSPEE) to protect sensitive information, verify content integrity, protect copyright, and so on. Specifically, KSPEE leverages a keyword extraction algorithm to identify important content containing sensitive information in the original text, thereby determining the potential positions for watermark information embedding. Subsequently, a masked language model is utilized to predict appropriate substitution words based on the surrounding semantic information of the embedding position. In addition, the prediction error expansion algorithm is employed to select appropriate words for substituting the original keywords, ensuring the successful embedding of watermark information while maintaining the recoverability of the original keywords. By identifying keywords and substituting them, a suitable method of protecting the original sensitive information is provided. Extensive experiments demonstrate that, under the promise of semantic distortion and lossless restoration of the original content, the proposed method KSPEE achieves outstanding watermarked text quality. A higher watermark embedding rate is achieved and strong security is shown by KSPEE. More importantly, KSPEE effectively prevents the leakage of sensitive information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助Hhhhh采纳,获得10
3秒前
3秒前
搜集达人应助Hhhhh采纳,获得10
3秒前
科研通AI2S应助Hhhhh采纳,获得10
3秒前
GingerF应助Hhhhh采纳,获得50
3秒前
华仔应助Hhhhh采纳,获得10
3秒前
深情安青应助Hhhhh采纳,获得10
3秒前
乐乐应助瞿寒采纳,获得10
6秒前
6秒前
9秒前
10秒前
ding应助开朗的大米采纳,获得10
13秒前
瞿寒发布了新的文献求助10
17秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
洒脱完成签到,获得积分10
28秒前
Ava应助Zola采纳,获得10
39秒前
汪鸡毛完成签到 ,获得积分10
39秒前
瞿寒完成签到,获得积分10
53秒前
Hcc完成签到 ,获得积分10
1分钟前
yhgz完成签到,获得积分10
1分钟前
1分钟前
小榕树完成签到,获得积分10
1分钟前
这学真难读下去完成签到,获得积分10
1分钟前
蓝色的鱼发布了新的文献求助10
1分钟前
蓝色的鱼完成签到,获得积分10
1分钟前
1分钟前
夜游完成签到,获得积分10
1分钟前
Zola发布了新的文献求助10
1分钟前
JamesPei应助废寝忘食采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
爆米花应助郭也采纳,获得10
2分钟前
安详烤鸡发布了新的文献求助10
2分钟前
废寝忘食完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432252
求助须知:如何正确求助?哪些是违规求助? 4544983
关于积分的说明 14194937
捐赠科研通 4464282
什么是DOI,文献DOI怎么找? 2447047
邀请新用户注册赠送积分活动 1438358
关于科研通互助平台的介绍 1415216