A CNN Hyperparameters Optimization Based on Particle Swarm Optimization for Mammography Breast Cancer Classification

超参数 计算机科学 卷积神经网络 粒子群优化 人工智能 乳腺摄影术 模式识别(心理学) 乳腺癌 人工神经网络 深度学习 上下文图像分类 机器学习 图像(数学) 癌症 医学 内科学
作者
Khadija Aguerchi,Younes Jabrane,Maryam Habba,Amir Hajjam El Hassani
出处
期刊:Journal of Imaging [MDPI AG]
卷期号:10 (2): 30-30
标识
DOI:10.3390/jimaging10020030
摘要

Breast cancer is considered one of the most-common types of cancers among females in the world, with a high mortality rate. Medical imaging is still one of the most-reliable tools to detect breast cancer. Unfortunately, manual image detection takes much time. This paper proposes a new deep learning method based on Convolutional Neural Networks (CNNs). Convolutional Neural Networks are widely used for image classification. However, the determination process for accurate hyperparameters and architectures is still a challenging task. In this work, a highly accurate CNN model to detect breast cancer by mammography was developed. The proposed method is based on the Particle Swarm Optimization (PSO) algorithm in order to look for suitable hyperparameters and the architecture for the CNN model. The CNN model using PSO achieved success rates of 98.23% and 97.98% on the DDSM and MIAS datasets, respectively. The experimental results proved that the proposed CNN model gave the best accuracy values in comparison with other studies in the field. As a result, CNN models for mammography classification can now be created automatically. The proposed method can be considered as a powerful technique for breast cancer prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yang完成签到 ,获得积分10
1秒前
赘婿应助文献狂人采纳,获得10
2秒前
3秒前
5秒前
善学以致用应助CLY采纳,获得10
5秒前
结实雁山完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
lynh0508发布了新的文献求助30
11秒前
万能图书馆应助李振华采纳,获得10
11秒前
岁岁发布了新的文献求助10
12秒前
星辰大海应助伊洛采纳,获得10
13秒前
13秒前
15秒前
GuMingyang完成签到,获得积分10
16秒前
隐形曼青应助灵魂风暴采纳,获得10
17秒前
小蘑菇应助饲养员采纳,获得10
18秒前
JIE发布了新的文献求助10
18秒前
21秒前
24秒前
24秒前
zhuzhuxia完成签到,获得积分10
26秒前
能干夏波发布了新的文献求助10
26秒前
27秒前
努力勤奋完成签到,获得积分10
28秒前
28秒前
29秒前
sissi应助echasl73采纳,获得10
30秒前
30秒前
清爽的恋风完成签到,获得积分10
31秒前
31秒前
别让我误会完成签到 ,获得积分10
31秒前
包容溪灵发布了新的文献求助10
31秒前
nini发布了新的文献求助10
32秒前
co发布了新的文献求助10
33秒前
33秒前
贺飞风发布了新的文献求助10
34秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141042
求助须知:如何正确求助?哪些是违规求助? 2791997
关于积分的说明 7801347
捐赠科研通 2448241
什么是DOI,文献DOI怎么找? 1302480
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226