稳健性(进化)
弹道
计算机科学
模型预测控制
控制理论(社会学)
人工神经网络
噪音(视频)
控制工程
控制器(灌溉)
跟踪误差
任务(项目管理)
方案(数学)
跟踪(教育)
人工智能
控制(管理)
工程类
数学
心理学
物理
教育学
天文
图像(数学)
数学分析
农学
生物化学
化学
系统工程
生物
基因
作者
Long Jin,Longqi Liu,Xingxia Wang,Mingsheng Shang,Fei‐Yue Wang
出处
期刊:IEEE transactions on intelligent vehicles
[Institute of Electrical and Electronics Engineers]
日期:2024-01-24
卷期号:9 (3): 4493-4503
被引量:26
标识
DOI:10.1109/tiv.2024.3358229
摘要
The trajectory tracking plays a vital role in unmanned driving technology. Although traditional control schemes may yield satisfactory outcomes in dealing with simple linear tasks, they may fall short when handling dynamic systems with time-varying characteristics or lack of ability to complete a given task with the disturbance of noise. Therefore, a predictive control scheme under the framework of artificial systems, computational experiments, and parallel execution (ACP) is proposed. Within the ACP framework, the scheme integrates a model predictive control (MPC) controller and a physical-informed neural network (PINN) model to tackle intricate trajectory tracking tasks effectively with noise considered. Moreover, soft constraints that can enhance model robustness and improve solution efficiency are considered in the scheme. Then, theoretical analyses on the PINN model are provided with rigorous mathematical proofs. Finally, experiments and comparisons with existing works are conducted to illustrate the effectiveness and superiority of the constructed PINN model for MPC-based trajectory tracking of vehicles.
科研通智能强力驱动
Strongly Powered by AbleSci AI