亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physical-Informed Neural Network for MPC-Based Trajectory Tracking of Vehicles With Noise Considered

稳健性(进化) 弹道 计算机科学 模型预测控制 控制理论(社会学) 人工神经网络 噪音(视频) 控制工程 控制器(灌溉) 跟踪误差 任务(项目管理) 方案(数学) 跟踪(教育) 人工智能 控制(管理) 工程类 数学 系统工程 化学 基因 数学分析 物理 图像(数学) 天文 生物 生物化学 教育学 心理学 农学
作者
Long Jin,Longqi Liu,Xingxia Wang,Mingsheng Shang,Fei‐Yue Wang
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (3): 4493-4503 被引量:46
标识
DOI:10.1109/tiv.2024.3358229
摘要

The trajectory tracking plays a vital role in unmanned driving technology. Although traditional control schemes may yield satisfactory outcomes in dealing with simple linear tasks, they may fall short when handling dynamic systems with time-varying characteristics or lack of ability to complete a given task with the disturbance of noise. Therefore, a predictive control scheme under the framework of artificial systems, computational experiments, and parallel execution (ACP) is proposed. Within the ACP framework, the scheme integrates a model predictive control (MPC) controller and a physical-informed neural network (PINN) model to tackle intricate trajectory tracking tasks effectively with noise considered. Moreover, soft constraints that can enhance model robustness and improve solution efficiency are considered in the scheme. Then, theoretical analyses on the PINN model are provided with rigorous mathematical proofs. Finally, experiments and comparisons with existing works are conducted to illustrate the effectiveness and superiority of the constructed PINN model for MPC-based trajectory tracking of vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
23秒前
26秒前
komorebi发布了新的文献求助10
28秒前
丘比特应助komorebi采纳,获得10
35秒前
Kashing完成签到,获得积分10
40秒前
小燕子完成签到 ,获得积分10
42秒前
叶也完成签到 ,获得积分10
52秒前
HaCat应助科研通管家采纳,获得10
1分钟前
长情如音完成签到,获得积分10
1分钟前
1分钟前
六六完成签到 ,获得积分10
1分钟前
tree完成签到 ,获得积分10
1分钟前
子訡完成签到 ,获得积分10
1分钟前
坚强的纸飞机完成签到,获得积分10
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
浮游应助熊建采纳,获得10
2分钟前
2分钟前
浮游应助GGBoy采纳,获得10
2分钟前
善学以致用应助可爱丹彤采纳,获得10
2分钟前
悲凉的忆南完成签到,获得积分10
2分钟前
yxl完成签到,获得积分10
2分钟前
钟哈哈完成签到,获得积分10
2分钟前
可耐的盈完成签到,获得积分10
2分钟前
2分钟前
绿毛水怪完成签到,获得积分10
2分钟前
lsc完成签到,获得积分10
2分钟前
小fei完成签到,获得积分10
2分钟前
2分钟前
2分钟前
麻辣薯条完成签到,获得积分10
2分钟前
时尚身影完成签到,获得积分10
2分钟前
可爱丹彤发布了新的文献求助10
2分钟前
流苏完成签到,获得积分10
3分钟前
流苏2完成签到,获得积分10
3分钟前
岸在海的深处完成签到 ,获得积分10
3分钟前
俏皮凌蝶完成签到,获得积分10
3分钟前
3分钟前
Gabriel发布了新的文献求助10
3分钟前
zhs发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302244
求助须知:如何正确求助?哪些是违规求助? 4449478
关于积分的说明 13848401
捐赠科研通 4335641
什么是DOI,文献DOI怎么找? 2380481
邀请新用户注册赠送积分活动 1375461
关于科研通互助平台的介绍 1341639