Log-Regularized Dictionary-Learning-Based Reinforcement Learning Algorithm for GNSS Positioning Correction

计算机科学 强化学习 全球导航卫星系统应用 算法 人工智能 机器学习 全球定位系统 电信
作者
J. Tang,Xueni Chen,Zhenni Li,Haoli Zhao,Shengli Xie,Kan Xie,Victor Kuzin,Bo Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 15022-15037
标识
DOI:10.1109/jiot.2023.3345943
摘要

In dynamic and complex environments, the positioning accuracy of global navigation satellite system (GNSS) will be seriously reduced. Deep reinforcement learning (DRL) has been found to give effective dynamic policy learning for complex GNSS positioning correction tasks. However, catastrophic interference in DRL models caused by the high correlation between successive positioning states, together with instability in gradient backpropagation in deep neural networks (DNNs), produces inaccurate DRL value approximation thereby degrades GNSS positioning performance. In this article, we develop a dictionary learning-based reinforcement learning (RL) algorithm with the nonconvex log regularizer for GNSS positioning correction. To avoid DNN instability problems, a dictionary learning-structured RL model is proposed. It has a feed-forward learning architecture obviating the need for gradient backpropagation. The nonconvex log regularizer for dictionary learning reduces the correlation between states and thereby alleviates interference in RL. This provides sparse representations, which can more effectively capture features and produce representations with lower biases than convex regularizers. Furthermore, the nonconvex optimization is made efficient through a decomposition scheme that generates an explicit closed-form solution using the proximal operator. Finally, based on the proposed dictionary learning-structured RL model, a novel positioning correction method is developed to enhance GNSS positioning accuracy. The experimental results indicate that the proposed method outperforms state-of-the-art sparse coding-based RL methods in benchmark environments. Moreover, the proposed method effectively improves GNSS positioning accuracy relative to the glsms Kalman filter acrlong KF method and the glsms weighted least squares acrlong WLS method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红红酱发布了新的文献求助10
刚刚
刚刚
小竹完成签到,获得积分10
刚刚
感动不二发布了新的文献求助10
1秒前
nancylan应助雨滴音乐采纳,获得10
1秒前
Gino完成签到,获得积分0
1秒前
三水发布了新的文献求助10
2秒前
2秒前
公司账号2发布了新的文献求助10
3秒前
bbbabo完成签到,获得积分10
3秒前
CipherSage应助欧大大采纳,获得10
4秒前
Zhangxinhao发布了新的文献求助10
5秒前
5秒前
bkagyin应助Leeyouyou采纳,获得10
5秒前
青雉完成签到,获得积分10
5秒前
wangxiangqin完成签到,获得积分10
6秒前
小罗萝卜完成签到,获得积分10
6秒前
JamesPei应助阿拉采纳,获得10
6秒前
7秒前
隐形曼青应助carl采纳,获得10
7秒前
wipmzxu发布了新的文献求助10
7秒前
7秒前
7秒前
在水一方应助王荷一采纳,获得10
8秒前
科目三应助lizhaonian采纳,获得10
9秒前
9秒前
小明给小明的求助进行了留言
9秒前
pluto应助Wunier61采纳,获得10
10秒前
279完成签到,获得积分10
10秒前
缥缈襄发布了新的文献求助10
10秒前
pluto应助fcyyc采纳,获得10
10秒前
10秒前
大个应助一一采纳,获得10
10秒前
文静的颖完成签到,获得积分10
10秒前
wangxiangqin发布了新的文献求助10
10秒前
洁净的鹰关注了科研通微信公众号
11秒前
爱学习的椰子完成签到 ,获得积分10
11秒前
邢晓彤完成签到 ,获得积分10
11秒前
研友_8y2G0L发布了新的文献求助20
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246