Log-Regularized Dictionary-Learning-Based Reinforcement Learning Algorithm for GNSS Positioning Correction

计算机科学 强化学习 全球导航卫星系统应用 算法 人工智能 机器学习 全球定位系统 电信
作者
J. Tang,Xueni Chen,Zhenni Li,Haoli Zhao,Shengli Xie,Kan Xie,Victor Kuzin,Bo Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 15022-15037
标识
DOI:10.1109/jiot.2023.3345943
摘要

In dynamic and complex environments, the positioning accuracy of global navigation satellite system (GNSS) will be seriously reduced. Deep reinforcement learning (DRL) has been found to give effective dynamic policy learning for complex GNSS positioning correction tasks. However, catastrophic interference in DRL models caused by the high correlation between successive positioning states, together with instability in gradient backpropagation in deep neural networks (DNNs), produces inaccurate DRL value approximation thereby degrades GNSS positioning performance. In this article, we develop a dictionary learning-based reinforcement learning (RL) algorithm with the nonconvex log regularizer for GNSS positioning correction. To avoid DNN instability problems, a dictionary learning-structured RL model is proposed. It has a feed-forward learning architecture obviating the need for gradient backpropagation. The nonconvex log regularizer for dictionary learning reduces the correlation between states and thereby alleviates interference in RL. This provides sparse representations, which can more effectively capture features and produce representations with lower biases than convex regularizers. Furthermore, the nonconvex optimization is made efficient through a decomposition scheme that generates an explicit closed-form solution using the proximal operator. Finally, based on the proposed dictionary learning-structured RL model, a novel positioning correction method is developed to enhance GNSS positioning accuracy. The experimental results indicate that the proposed method outperforms state-of-the-art sparse coding-based RL methods in benchmark environments. Moreover, the proposed method effectively improves GNSS positioning accuracy relative to the glsms Kalman filter acrlong KF method and the glsms weighted least squares acrlong WLS method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助安然采纳,获得10
刚刚
曼林南烟完成签到,获得积分10
刚刚
勤恳的凌蝶完成签到,获得积分10
刚刚
冤家Gg应助全若之采纳,获得10
刚刚
1秒前
1秒前
yaoyao发布了新的文献求助10
1秒前
兴奋海雪发布了新的文献求助10
2秒前
4秒前
吕岩发布了新的文献求助10
5秒前
5秒前
6秒前
新青年发布了新的文献求助10
6秒前
大模型应助yaoyao采纳,获得10
7秒前
于采文完成签到,获得积分10
7秒前
复杂函完成签到,获得积分10
7秒前
7秒前
8秒前
LL发布了新的文献求助10
8秒前
大模型应助飞云采纳,获得10
8秒前
搞怪大炮完成签到 ,获得积分10
9秒前
lxt发布了新的文献求助10
10秒前
10秒前
丘比特应助大力云朵采纳,获得10
11秒前
11秒前
12秒前
赘婿应助故意的皮皮虾采纳,获得10
12秒前
薯愿发布了新的文献求助10
13秒前
新青年完成签到,获得积分20
13秒前
13秒前
科研通AI2S应助Jim luo采纳,获得10
14秒前
15秒前
15秒前
lemon发布了新的文献求助10
16秒前
不安岱周发布了新的文献求助10
16秒前
吕岩完成签到,获得积分10
17秒前
angel完成签到,获得积分10
18秒前
高兴的老黑完成签到,获得积分10
18秒前
夜願发布了新的文献求助10
19秒前
郭茜蕊发布了新的文献求助10
20秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051374
求助须知:如何正确求助?哪些是违规求助? 2708662
关于积分的说明 7413751
捐赠科研通 2352869
什么是DOI,文献DOI怎么找? 1245378
科研通“疑难数据库(出版商)”最低求助积分说明 605633
版权声明 595829