亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Log-Regularized Dictionary-Learning-Based Reinforcement Learning Algorithm for GNSS Positioning Correction

计算机科学 强化学习 全球导航卫星系统应用 算法 人工智能 机器学习 全球定位系统 电信
作者
J. Tang,Xueni Chen,Zhenni Li,Haoli Zhao,Shengli Xie,Kan Xie,Victor Kuzin,Bo Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 15022-15037
标识
DOI:10.1109/jiot.2023.3345943
摘要

In dynamic and complex environments, the positioning accuracy of global navigation satellite system (GNSS) will be seriously reduced. Deep reinforcement learning (DRL) has been found to give effective dynamic policy learning for complex GNSS positioning correction tasks. However, catastrophic interference in DRL models caused by the high correlation between successive positioning states, together with instability in gradient backpropagation in deep neural networks (DNNs), produces inaccurate DRL value approximation thereby degrades GNSS positioning performance. In this article, we develop a dictionary learning-based reinforcement learning (RL) algorithm with the nonconvex log regularizer for GNSS positioning correction. To avoid DNN instability problems, a dictionary learning-structured RL model is proposed. It has a feed-forward learning architecture obviating the need for gradient backpropagation. The nonconvex log regularizer for dictionary learning reduces the correlation between states and thereby alleviates interference in RL. This provides sparse representations, which can more effectively capture features and produce representations with lower biases than convex regularizers. Furthermore, the nonconvex optimization is made efficient through a decomposition scheme that generates an explicit closed-form solution using the proximal operator. Finally, based on the proposed dictionary learning-structured RL model, a novel positioning correction method is developed to enhance GNSS positioning accuracy. The experimental results indicate that the proposed method outperforms state-of-the-art sparse coding-based RL methods in benchmark environments. Moreover, the proposed method effectively improves GNSS positioning accuracy relative to the glsms Kalman filter acrlong KF method and the glsms weighted least squares acrlong WLS method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
leapper发布了新的文献求助10
28秒前
gentleman完成签到,获得积分10
38秒前
无花果应助科研通管家采纳,获得30
48秒前
50秒前
量子星尘发布了新的文献求助50
55秒前
Daniel发布了新的文献求助10
1分钟前
完美世界应助沉醉的中国钵采纳,获得100
1分钟前
2分钟前
SciGPT应助城。采纳,获得10
2分钟前
粱青寒完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
城。发布了新的文献求助10
2分钟前
2分钟前
shi发布了新的文献求助10
2分钟前
乐乐应助shi采纳,获得10
2分钟前
2分钟前
2分钟前
wanci应助城。采纳,获得10
3分钟前
3分钟前
3分钟前
wanli发布了新的文献求助10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
wanli完成签到,获得积分10
3分钟前
搜集达人应助周而复始@采纳,获得10
4分钟前
4分钟前
学生信的大叔完成签到,获得积分10
4分钟前
周而复始@发布了新的文献求助10
4分钟前
daiyu发布了新的文献求助10
4分钟前
情怀应助周而复始@采纳,获得10
4分钟前
daiyu完成签到,获得积分20
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
周而复始@完成签到,获得积分10
4分钟前
4分钟前
5分钟前
宋艳芳完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889315
求助须知:如何正确求助?哪些是违规求助? 4173414
关于积分的说明 12952008
捐赠科研通 3934811
什么是DOI,文献DOI怎么找? 2159027
邀请新用户注册赠送积分活动 1177325
关于科研通互助平台的介绍 1082170