清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Log-Regularized Dictionary-Learning-Based Reinforcement Learning Algorithm for GNSS Positioning Correction

计算机科学 强化学习 全球导航卫星系统应用 算法 人工智能 机器学习 全球定位系统 电信
作者
J. Tang,Xueni Chen,Zhenni Li,Haoli Zhao,Shengli Xie,Kan Xie,Victor Kuzin,Bo Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 15022-15037
标识
DOI:10.1109/jiot.2023.3345943
摘要

In dynamic and complex environments, the positioning accuracy of global navigation satellite system (GNSS) will be seriously reduced. Deep reinforcement learning (DRL) has been found to give effective dynamic policy learning for complex GNSS positioning correction tasks. However, catastrophic interference in DRL models caused by the high correlation between successive positioning states, together with instability in gradient backpropagation in deep neural networks (DNNs), produces inaccurate DRL value approximation thereby degrades GNSS positioning performance. In this article, we develop a dictionary learning-based reinforcement learning (RL) algorithm with the nonconvex log regularizer for GNSS positioning correction. To avoid DNN instability problems, a dictionary learning-structured RL model is proposed. It has a feed-forward learning architecture obviating the need for gradient backpropagation. The nonconvex log regularizer for dictionary learning reduces the correlation between states and thereby alleviates interference in RL. This provides sparse representations, which can more effectively capture features and produce representations with lower biases than convex regularizers. Furthermore, the nonconvex optimization is made efficient through a decomposition scheme that generates an explicit closed-form solution using the proximal operator. Finally, based on the proposed dictionary learning-structured RL model, a novel positioning correction method is developed to enhance GNSS positioning accuracy. The experimental results indicate that the proposed method outperforms state-of-the-art sparse coding-based RL methods in benchmark environments. Moreover, the proposed method effectively improves GNSS positioning accuracy relative to the glsms Kalman filter acrlong KF method and the glsms weighted least squares acrlong WLS method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助脑残骑士老张采纳,获得10
8秒前
sweet雪儿妞妞完成签到 ,获得积分10
24秒前
夜休2024完成签到 ,获得积分10
30秒前
SciGPT应助xing采纳,获得10
31秒前
36秒前
小石榴的爸爸完成签到 ,获得积分10
38秒前
xing完成签到,获得积分10
40秒前
小石榴爸爸完成签到 ,获得积分10
46秒前
顾矜应助掠影采纳,获得30
49秒前
zzz完成签到,获得积分10
51秒前
幻想小蜜蜂完成签到,获得积分10
58秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
掠影发布了新的文献求助30
1分钟前
snn完成签到 ,获得积分10
1分钟前
包子牛奶完成签到,获得积分10
2分钟前
掠影完成签到,获得积分10
2分钟前
2分钟前
666完成签到 ,获得积分10
2分钟前
似水流年完成签到 ,获得积分10
2分钟前
3分钟前
Java完成签到,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
张杰列夫完成签到 ,获得积分10
3分钟前
jh完成签到 ,获得积分10
3分钟前
结实凌瑶完成签到 ,获得积分10
3分钟前
wanci应助hao采纳,获得10
3分钟前
3分钟前
hao发布了新的文献求助10
3分钟前
小乐完成签到,获得积分10
3分钟前
梦里的大子刊完成签到 ,获得积分10
3分钟前
Augenstern完成签到 ,获得积分10
3分钟前
4分钟前
欢喜的问凝完成签到 ,获得积分10
4分钟前
coding完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539082
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566725
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1453018