Log-Regularized Dictionary-Learning-Based Reinforcement Learning Algorithm for GNSS Positioning Correction

计算机科学 强化学习 全球导航卫星系统应用 算法 人工智能 机器学习 全球定位系统 电信
作者
J. Tang,Xueni Chen,Zhenni Li,Haoli Zhao,Shengli Xie,Kan Xie,Victor Kuzin,Bo Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (8): 15022-15037
标识
DOI:10.1109/jiot.2023.3345943
摘要

In dynamic and complex environments, the positioning accuracy of global navigation satellite system (GNSS) will be seriously reduced. Deep reinforcement learning (DRL) has been found to give effective dynamic policy learning for complex GNSS positioning correction tasks. However, catastrophic interference in DRL models caused by the high correlation between successive positioning states, together with instability in gradient backpropagation in deep neural networks (DNNs), produces inaccurate DRL value approximation thereby degrades GNSS positioning performance. In this article, we develop a dictionary learning-based reinforcement learning (RL) algorithm with the nonconvex log regularizer for GNSS positioning correction. To avoid DNN instability problems, a dictionary learning-structured RL model is proposed. It has a feed-forward learning architecture obviating the need for gradient backpropagation. The nonconvex log regularizer for dictionary learning reduces the correlation between states and thereby alleviates interference in RL. This provides sparse representations, which can more effectively capture features and produce representations with lower biases than convex regularizers. Furthermore, the nonconvex optimization is made efficient through a decomposition scheme that generates an explicit closed-form solution using the proximal operator. Finally, based on the proposed dictionary learning-structured RL model, a novel positioning correction method is developed to enhance GNSS positioning accuracy. The experimental results indicate that the proposed method outperforms state-of-the-art sparse coding-based RL methods in benchmark environments. Moreover, the proposed method effectively improves GNSS positioning accuracy relative to the glsms Kalman filter acrlong KF method and the glsms weighted least squares acrlong WLS method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
玩命的十三完成签到 ,获得积分10
5秒前
寂寞的诗云完成签到,获得积分10
7秒前
我爱科研完成签到 ,获得积分10
7秒前
8秒前
Bin_Liu发布了新的文献求助10
9秒前
She完成签到,获得积分10
9秒前
12秒前
Raki完成签到,获得积分10
13秒前
22完成签到 ,获得积分10
13秒前
Echo_1995完成签到,获得积分10
16秒前
徐慕源完成签到,获得积分10
16秒前
able发布了新的文献求助10
17秒前
呜呜完成签到 ,获得积分10
18秒前
18秒前
CQ完成签到 ,获得积分10
19秒前
漂亮天真完成签到,获得积分10
20秒前
gmc完成签到 ,获得积分10
20秒前
怡然白竹完成签到 ,获得积分10
22秒前
懵懂的海露完成签到,获得积分10
26秒前
testz完成签到,获得积分10
28秒前
29秒前
一一一完成签到,获得积分10
32秒前
翊然甜周完成签到,获得积分10
32秒前
32秒前
zdnn完成签到,获得积分10
34秒前
TLDX发布了新的文献求助10
37秒前
鳄鱼蛋完成签到,获得积分10
38秒前
luwenxuan完成签到,获得积分10
38秒前
38秒前
奋斗跳跳糖完成签到,获得积分10
38秒前
小白加油完成签到 ,获得积分10
39秒前
39秒前
星辰大海应助大橙子采纳,获得10
39秒前
40秒前
繁荣的新晴完成签到,获得积分20
41秒前
闫星宇完成签到,获得积分10
41秒前
辻诺完成签到 ,获得积分10
41秒前
AR完成签到,获得积分10
41秒前
41秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022