一般化
粒子群优化
人工神经网络
卷积神经网络
计算机科学
有限元法
算法
计算
遗传算法
光学
人工智能
机器学习
物理
数学
结构工程
工程类
数学分析
作者
Zhenyu Gu,Tigang Ning,Li Pei,Yangmei Liu,Jing Li,Jingjing Zheng,Jingyi Song,Chengbao Zhang,Hua Wang,Wei Jiang,Wensheng Wang
摘要
In this work, genetic algorithm (GA) is employed to optimize convolutional neural networks (CNNs) for predicting the confinement loss (CL) in anti-resonant fibers (ARFs), achieving a prediction accuracy of CL magnitude reached 90.6%, which, to the best of our knowledge, represents the highest accuracy to date and marks the first instance of using a single model to predict CL across diverse ARF structures. Different from the previous definition of ARF structures with parameter groups, we use anchor points to describe these structures, thus eliminating the differences in expression among them. This improvement allows the model to gain insight into the specific structural characteristics, thereby enhancing its generalization capabilities. Furthermore, we demonstrate a particle swarm optimization algorithm (PSO), driven by our model, for the design of ARFs, validating the model's robust predictive accuracy and versatility. Compared with the calculation of CL by finite element method (FEM), this model significantly reduces the cost time, and provides a speed-up method in fiber design driven by numerical calculation.
科研通智能强力驱动
Strongly Powered by AbleSci AI