How to Make a Single-Layer Pouch Cell That Matches the Performance of a Commercial Li-Ion Cell

图层(电子) 小袋 离子 细胞 材料科学 计算机科学 纳米技术 化学 生物 解剖 生物化学 有机化学
作者
Matthew D. L. Garayt,Michel B. Johnson,Lauren Laidlaw,Mark A. McArthur,S. Trussler,Jessie Harlow,J. R. Dahn,Chongyin Yang
出处
期刊:Meeting abstracts 卷期号:MA2023-02 (2): 434-434
标识
DOI:10.1149/ma2023-022434mtgabs
摘要

As lithium-ion batteries (LIBs) have exploded in popularity due to the consumer electronics and electric vehicle industries, many resources are poured into research. While the simplest cell format requiring the least amount of active material to make in a research laboratory to study various aspects of the cell is usually the coin cell, it is far from the most representative of commercial LIBs. Oftentimes, coin cells are made with a large negative electrode overhang to reduce the risk from positive/negative electrode misalignment, but the overhang region can cause Li + to become effectively trapped at higher C-rates 1 . While this is a necessary trade-off in today’s commercial LIB manufacturing, the overhang area is normally a much smaller fraction of the total negative electrode area in a commercial cell than in a laboratory coin cell, which can lead to discrepancies in cycle testing. Moreover, during assembly of commercial stacked or wound cells, there is always a region in which one side of a double-sided coating, typically the negative, is not needed and thus a single-sided electrode should be used. However, not all manufacturers eliminate the outward-facing second side and elect to simply use double-sided coatings throughout. Therefore, studying the effects of excess electrode in single-layer pouch cells will be explored in this presentation. In this presentation, cells made in various formats (coin and stacked pouch) will be compared to single-layer pouch cells made with and without negative electrode overhang. Single-layer pouch cells are the easiest format for assembling full cells without overhang because they are neither too small nor too big for positive/negative electrode alignment to be difficult. Moreover, single-layer pouch cells made with double-sided coatings (without overhang) and cycled using Ultra-High Precision Coulometry (UHPC) will be shown to have poor cycling. This is for two reasons: 1) for a double-sided negative, the outward-facing coating of the electrode can trap Li + just like the overhang on the inward-facing coating; and 2) the outward-facing positive can be deintercalated and provide more capacity than desired 2 , possibly even surpassing the negative/positive areal capacity ratio. Single-layer pouch cells with no overhang are shown in Figure 1a to outperform all other cell formats tested, retaining 90% of their original capacity after 500 cycles at C/3 and 40 °C, and have the lowest difference in capacity between typical C/3 and C/20 checkup cycles as shown in Figure 1b. The stacked pouch cells in Figure 1 are composed of 3 positive and 4 negative electrodes that are all double-sided, meaning there are two outward-facing negative electrode coatings that can trap Li + , possibly resulting in the much poorer capacity fade to 80% after 500 cycles illustrated in Figure 1a. Thus, single-layer pouch cells without overhang give the most realistic cycling results for the tested electrode materials. Figure 1. C/3 cycling of full cells of various formats denoted in the legend. Plotted in (a) is the normalized discharge capacity and (b) is the difference in areal discharge capacity between the C/20 checkup cycle and preceding C/3 cycle. REFERENCES Gyenes, B., Stevens, D.A., Chevrier, V.L., and Dahn, J.R. (2015). Understanding Anomalous Behavior in Coulombic Efficiency Measurements on Li-Ion Batteries. J Electrochem Soc 162 , A278–A283. 10.1149/2.0191503jes. Smith, A., Stüble, P., Leuthner, L., Hofmann, A., Jeschull, F., and Mereacre, L. (2023). Potential and Limitations of Research Battery Cell Types for Electrochemical Data Acquisition. Batter Supercaps e202300080 . doi.org/10.1002/batt.202300080. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
独特的莫言完成签到,获得积分10
2秒前
lin发布了新的文献求助10
3秒前
aero完成签到 ,获得积分10
5秒前
123号完成签到,获得积分10
7秒前
充电宝应助TT采纳,获得10
9秒前
10秒前
10秒前
英姑应助荒野星辰采纳,获得10
12秒前
12秒前
YHY完成签到,获得积分10
14秒前
科研通AI5应助魏伯安采纳,获得10
14秒前
caoyy发布了新的文献求助10
14秒前
15秒前
16秒前
张喻235532完成签到,获得积分10
17秒前
失眠虔纹发布了新的文献求助10
18秒前
香蕉觅云应助糊涂的小伙采纳,获得10
18秒前
18秒前
sutharsons应助科研通管家采纳,获得200
20秒前
打打应助科研通管家采纳,获得10
20秒前
axin应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
20秒前
李健应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
21秒前
lu应助科研通管家采纳,获得10
21秒前
21秒前
华仔应助科研通管家采纳,获得10
21秒前
研友_MLJldZ发布了新的文献求助10
21秒前
wys完成签到 ,获得积分10
22秒前
23秒前
michaelvin完成签到,获得积分10
23秒前
学术大白完成签到 ,获得积分10
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849