A Novel Wind Turbine Rolling Element Bearing Fault Diagnosis Method Based on CEEMDAN and Improved TFR Demodulation Analysis

解调 断层(地质) 涡轮机 滚动轴承 方位(导航) 风力发电 结构工程 计算机科学 汽车工程 工程类 电气工程 振动 电信 声学 机械工程 物理 地质学 人工智能 地震学 频道(广播)
作者
Dahai Zhang,Yiming Wang,Yongjian Jiang,Tao Zhao,Haiyang Xu,Peng Qian,Chenglong Li
出处
期刊:Energies [MDPI AG]
卷期号:17 (4): 819-819 被引量:5
标识
DOI:10.3390/en17040819
摘要

Among renewable energy sources, wind energy is regarded as one of the fastest-growing segments, which plays a key role in enhancing environmental quality. Wind turbines are generally located in remote and harsh environments. Bearings are a crucial component in wind turbines, and their failure is one of the most frequent reasons for system breakdown. Wind turbine bearing faults are usually very localized during their early stages which is precisely when they need to be detected. Hence, the early diagnosis of bearing faults holds paramount practical significance. In order to solve the problem of weak pulses being masked by noise in early failure signals of rolling element bearings, a novel fault diagnosis method is proposed based on the combination of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and an improved TFR demodulation method. Initially, the decomposition of vibration signals using CEEMDAN is carried out to obtain several intrinsic mode functions (IMFs). Subsequently, a novel KC indicator that combines kurtosis and the correlation function is designed to select the effective components for signal reconstruction. Finally, an innovative approach based on the continuous wavelet transform (CWT) for multi-scale demodulation analysis in the domain of time–frequency representation (TFR) is also introduced to extract the envelope spectrum. Further fault diagnosis can be achieved by the identification of the fault characteristic frequency (FCF). This study focuses on the theoretical exploration of bearing faults diagnosis algorithms, employing modeling and simulation techniques. The effectiveness and feasibility of the proposed method are validated through the analysis of simulated signals and experimental signals provided by the Center for Intelligent Maintenance Systems (IMS) of the University of Cincinnati and the Case Western Reserve University (CWRU) Bearing Data Center. The method demonstrates the capability to identify various types of bearing faults, including outer race and inner race faults, with a high degree of computational efficiency. Comparative analysis indicates a significant enhancement in fault diagnostic performance when compared to existing methods. This research contributes to the advancement of effective bearing fault diagnosis methodologies for wind turbines, thereby ensuring their reliable operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助10
3秒前
orixero应助森气采纳,获得10
5秒前
6秒前
7秒前
8秒前
9秒前
guying发布了新的文献求助10
10秒前
11秒前
王楠发布了新的文献求助10
12秒前
applegood完成签到,获得积分10
12秒前
momo完成签到,获得积分20
13秒前
充电宝应助mcs0808采纳,获得10
13秒前
cocolu应助紫津采纳,获得10
14秒前
15秒前
张凤发布了新的文献求助30
15秒前
HaRRy发布了新的文献求助10
16秒前
Cyy12355发布了新的文献求助10
18秒前
18秒前
19秒前
momo发布了新的文献求助30
20秒前
21秒前
Ava应助cosmos采纳,获得10
23秒前
slowslow发布了新的文献求助30
23秒前
舒服的吗喽完成签到,获得积分10
24秒前
24秒前
25秒前
26秒前
28秒前
欢呼忆丹发布了新的文献求助10
28秒前
29秒前
29秒前
30秒前
张凤发布了新的文献求助10
30秒前
小蘑菇应助陈某人采纳,获得10
30秒前
33秒前
大个应助森气采纳,获得10
33秒前
小马甲应助干净怀寒采纳,获得10
34秒前
juan发布了新的文献求助10
34秒前
脑洞疼应助张亦芊如采纳,获得10
36秒前
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443733
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978605
捐赠科研通 2728387
什么是DOI,文献DOI怎么找? 1496507
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213