Disentangling multiple sclerosis phenotypes through Mendelian disorders: A network approach

表型 孟德尔遗传 多发性硬化 内表型 疾病 生物 联机孟德尔在人类中的遗传 计算生物学 遗传学 遗传建筑学 生物信息学 神经科学 基因 医学 免疫学 认知 病理
作者
Gianmarco Bellucci,Maria Chiara Buscarinu,Roberta Reniè,Virginia Rinaldi,Rachele Bigi,Rosella Mechelli,Silvia Romano,Marco Salvetti,Giovanni Ristori
出处
期刊:Multiple Sclerosis Journal [SAGE]
卷期号:30 (3): 325-335 被引量:1
标识
DOI:10.1177/13524585241227119
摘要

Background: The increasing knowledge about multiple sclerosis (MS) pathophysiology has reinforced the need for an improved description of disease phenotypes, connected to disease biology. Growing evidence indicates that complex diseases constitute phenotypical and genetic continuums with “simple,” monogenic disorders, suggesting shared pathomechanisms. Objectives: The objective of this study was to depict a novel MS phenotypical framework leveraging shared physiopathology with Mendelian diseases and to identify phenotype-specific candidate drugs. Methods: We performed an enrichment testing of MS-associated variants with Mendelian disorders genes. We defined a “MS-Mendelian network,” further analyzed to define enriched phenotypic subnetworks and biological processes. Finally, a network-based drug screening was implemented. Results: Starting from 617 MS-associated loci, we showed a significant enrichment of monogenic diseases ( p < 0.001). We defined an MS-Mendelian molecular network based on 331 genes and 486 related disorders, enriched in four phenotypic classes: neurologic, immunologic, metabolic, and visual. We prioritized a total of 503 drugs, of which 27 molecules active in 3/4 phenotypical subnetworks and 140 in subnetwork pairs. Conclusion: The genetic architecture of MS contains the seeds of pathobiological multiplicities shared with immune, neurologic, metabolic and visual monogenic disorders. This result may inform future classifications of MS endophenotypes and support the development of new therapies in both MS and rare diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangsi完成签到 ,获得积分10
刚刚
曾峥完成签到,获得积分10
1秒前
1秒前
1秒前
雪白梦容完成签到,获得积分10
2秒前
小熊维C完成签到,获得积分10
2秒前
小古完成签到,获得积分20
2秒前
木头的木应助王玉颖采纳,获得10
3秒前
3秒前
月倚樱落时完成签到,获得积分10
3秒前
Wayne发布了新的文献求助10
4秒前
zai发布了新的文献求助10
4秒前
坦率白竹发布了新的文献求助10
4秒前
顺利松鼠完成签到 ,获得积分10
5秒前
5秒前
KCMd发布了新的文献求助20
6秒前
6秒前
wjx发布了新的文献求助10
7秒前
7秒前
船舵发布了新的文献求助10
7秒前
我是老大应助qingjiuhua采纳,获得10
8秒前
Lucas应助复杂梦安采纳,获得10
8秒前
dawei完成签到 ,获得积分10
9秒前
欣喜翠丝完成签到,获得积分10
9秒前
李爱国应助板栗采纳,获得10
9秒前
欣阳1021完成签到,获得积分10
9秒前
CodeCraft应助大野采纳,获得10
9秒前
椰子卷完成签到,获得积分10
10秒前
ds完成签到,获得积分10
10秒前
李健的粉丝团团长应助xumy采纳,获得10
10秒前
打打应助铲铲采纳,获得10
11秒前
天地一体完成签到,获得积分10
11秒前
科研通AI6应助lvzhechen采纳,获得10
11秒前
耿春丽完成签到 ,获得积分10
11秒前
欣喜翠丝发布了新的文献求助10
11秒前
共享精神应助zai采纳,获得10
11秒前
万能图书馆应助豆包_P12345采纳,获得10
12秒前
潇洒的水蓉完成签到,获得积分10
12秒前
血鸚鵡发布了新的文献求助20
12秒前
敏感雅香发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409900
求助须知:如何正确求助?哪些是违规求助? 4527473
关于积分的说明 14110874
捐赠科研通 4441846
什么是DOI,文献DOI怎么找? 2437698
邀请新用户注册赠送积分活动 1429670
关于科研通互助平台的介绍 1407745