Disentangling multiple sclerosis phenotypes through Mendelian disorders: A network approach

表型 孟德尔遗传 多发性硬化 内表型 疾病 生物 联机孟德尔在人类中的遗传 计算生物学 遗传学 遗传建筑学 生物信息学 神经科学 基因 医学 免疫学 认知 病理
作者
Gianmarco Bellucci,Maria Chiara Buscarinu,Roberta Reniè,Virginia Rinaldi,Rachele Bigi,Rosella Mechelli,Silvia Romano,Marco Salvetti,Giovanni Ristori
出处
期刊:Multiple Sclerosis Journal [SAGE Publishing]
卷期号:30 (3): 325-335 被引量:1
标识
DOI:10.1177/13524585241227119
摘要

Background: The increasing knowledge about multiple sclerosis (MS) pathophysiology has reinforced the need for an improved description of disease phenotypes, connected to disease biology. Growing evidence indicates that complex diseases constitute phenotypical and genetic continuums with “simple,” monogenic disorders, suggesting shared pathomechanisms. Objectives: The objective of this study was to depict a novel MS phenotypical framework leveraging shared physiopathology with Mendelian diseases and to identify phenotype-specific candidate drugs. Methods: We performed an enrichment testing of MS-associated variants with Mendelian disorders genes. We defined a “MS-Mendelian network,” further analyzed to define enriched phenotypic subnetworks and biological processes. Finally, a network-based drug screening was implemented. Results: Starting from 617 MS-associated loci, we showed a significant enrichment of monogenic diseases ( p < 0.001). We defined an MS-Mendelian molecular network based on 331 genes and 486 related disorders, enriched in four phenotypic classes: neurologic, immunologic, metabolic, and visual. We prioritized a total of 503 drugs, of which 27 molecules active in 3/4 phenotypical subnetworks and 140 in subnetwork pairs. Conclusion: The genetic architecture of MS contains the seeds of pathobiological multiplicities shared with immune, neurologic, metabolic and visual monogenic disorders. This result may inform future classifications of MS endophenotypes and support the development of new therapies in both MS and rare diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助鑫炜赵采纳,获得10
刚刚
yznfly应助行云流水采纳,获得20
1秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
1秒前
你嵙这个期刊没买应助meo采纳,获得10
1秒前
Loong完成签到,获得积分10
1秒前
打打应助初次见面采纳,获得10
2秒前
嘟嘟图图发布了新的文献求助10
2秒前
叶问完成签到,获得积分10
2秒前
YHDing完成签到,获得积分10
2秒前
Lucas应助净净子采纳,获得10
3秒前
沙克几十块完成签到,获得积分0
3秒前
封似狮完成签到,获得积分10
3秒前
4秒前
Orange应助经冰夏采纳,获得10
4秒前
5秒前
三层楼高完成签到,获得积分10
7秒前
麦乐迪应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
wwz应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
sakria应助科研通管家采纳,获得10
8秒前
玖Nine完成签到 ,获得积分10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
changping应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
sakria应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
嘟嘟图图完成签到,获得积分10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
行云流水完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
smile发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304885
求助须知:如何正确求助?哪些是违规求助? 4451091
关于积分的说明 13850915
捐赠科研通 4338444
什么是DOI,文献DOI怎么找? 2381863
邀请新用户注册赠送积分活动 1376942
关于科研通互助平台的介绍 1344399