作者
Vichayut Suthat Na Ayutaya,Chaianan Tantisatirapoon,Sekdusit Aekgawong,Watcharapong Anakkamatee,Taechasit Danjittrong,Chatchai Kreepala
摘要
Abstract Volatile organic compounds (VOCs) have grown due to their crucial role in transitioning from invasive to noninvasive cancer diagnostic methods. This study aimed to assess the feasibility of the metal oxide biosensor platform using urine VOCs for detecting genitourinary cancers. Five different commercially available semiconductor sensors were chosen to detect specific VOCs (methane, iso-butane, hydrogen, ethanol, hydrogen sulfide, ammonia, toluene, butane, propane, trimethylamine, and methyl-mercaptan). Changes in electrical resistance due to temperature variations from the voltage heater were examined to characterize VOC metabolism. Logistic regression and ROC analysis were employed to evaluate potential urine VOCs for genitourinary cancer determination. This study involved 64 participants which were categorized into a cancer and a non-cancer group. The genitourinary cancer (confirmed by tissue pathology) comprised 32 patients, including renal cell carcinoma (3.1%), transitional cell carcinoma (46.9%), and prostate cancer (50%). The non-cancer comprised 32 patients, with 9 healthy subjects and 23 individuals with other genitourinary diseases. Results indicated that VOC sensors for methane, iso-butane, hydrogen, and ethanol, at a voltage heater of 2000 mV, demonstrated a significant predictive capability for genitourinary cancer with P = 0.013. The ROC of these biomarkers also indicated statistical significance in predicting the occurrence of the disease ( P < 0.05). This report suggested that methane, iso-butane, hydrogen, and ethanol VOCs exhibited potential for diagnosing genitourinary cancer. Developing gas metal oxide sensors tailored to these compounds, and monitoring changes in electrical resistance, could serve as an innovative tool for identifying this specific type of cancer.