Multi-Grained Radiology Report Generation With Sentence-Level Image-Language Contrastive Learning

特征(语言学) 计算机科学 人工智能 任务(项目管理) 判决 自然语言处理 深度学习 图像(数学) 利用 语言学 哲学 计算机安全 管理 经济
作者
Aohan Liu,Yuchen Guo,Jun‐Hai Yong,Feng Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2657-2669 被引量:2
标识
DOI:10.1109/tmi.2024.3372638
摘要

The automatic generation of accurate radiology reports is of great clinical importance and has drawn growing research interest. However, it is still a challenging task due to the imbalance between normal and abnormal descriptions and the multi-sentence and multi-topic nature of radiology reports. These features result in significant challenges to generating accurate descriptions for medical images, especially the important abnormal findings. Previous methods to tackle these problems rely heavily on extra manual annotations, which are expensive to acquire. We propose a multi-grained report generation framework incorporating sentence-level image-sentence contrastive learning, which does not require any extra labeling but effectively learns knowledge from the image-report pairs. We first introduce contrastive learning as an auxiliary task for image feature learning. Different from previous contrastive methods, we exploit the multi-topic nature of imaging reports and perform fine-grained contrastive learning by extracting sentence topics and contents and contrasting between sentence contents and refined image contents guided by sentence topics. This forces the model to learn distinct abnormal image features for each specific topic. During generation, we use two decoders to first generate coarse sentence topics and then the fine-grained text of each sentence. We directly supervise the intermediate topics using sentence topics learned by our contrastive objective. This strengthens the generation constraint and enables independent fine-tuning of the decoders using reinforcement learning, which further boosts model performance. Experiments on two large-scale datasets MIMIC-CXR and IU-Xray demonstrate that our approach outperforms existing state-of-the-art methods, evaluated by both language generation metrics and clinical accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Irey发布了新的文献求助30
刚刚
wangsenyu完成签到 ,获得积分10
刚刚
2秒前
英俊乌龟发布了新的文献求助10
3秒前
桂花乌龙发布了新的文献求助10
4秒前
8秒前
伟航发布了新的文献求助10
12秒前
俗丨完成签到,获得积分10
12秒前
17秒前
文艺雨文完成签到,获得积分20
19秒前
19秒前
内向夜山完成签到,获得积分10
20秒前
英俊乌龟发布了新的文献求助10
22秒前
23秒前
23秒前
文艺雨文发布了新的文献求助10
23秒前
内向夜山发布了新的文献求助10
24秒前
Approval完成签到,获得积分10
24秒前
24秒前
风趣的灵枫完成签到 ,获得积分10
25秒前
26秒前
xiaobei完成签到,获得积分10
27秒前
李菠萝发布了新的文献求助30
27秒前
xiaoxiong发布了新的文献求助10
27秒前
哈哈发布了新的文献求助10
28秒前
Haonan完成签到,获得积分10
31秒前
虚拟的怀绿完成签到,获得积分10
32秒前
爽爽完成签到 ,获得积分10
34秒前
34秒前
伟航完成签到,获得积分10
34秒前
科研通AI2S应助lay采纳,获得10
34秒前
Lucas应助xiaobei采纳,获得10
34秒前
斯文败类应助瑞rui1采纳,获得10
35秒前
37秒前
37秒前
俊逸金针菇完成签到 ,获得积分10
37秒前
小蘑菇应助Young采纳,获得10
38秒前
38秒前
研友_LJbeXL发布了新的文献求助10
40秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180810
求助须知:如何正确求助?哪些是违规求助? 2831014
关于积分的说明 7982642
捐赠科研通 2492884
什么是DOI,文献DOI怎么找? 1329918
科研通“疑难数据库(出版商)”最低求助积分说明 635836
版权声明 602954