亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Grained Radiology Report Generation With Sentence-Level Image-Language Contrastive Learning

特征(语言学) 计算机科学 人工智能 任务(项目管理) 判决 自然语言处理 深度学习 图像(数学) 利用 语言学 哲学 计算机安全 管理 经济
作者
Aohan Liu,Yuchen Guo,Jun‐Hai Yong,Feng Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2657-2669 被引量:11
标识
DOI:10.1109/tmi.2024.3372638
摘要

The automatic generation of accurate radiology reports is of great clinical importance and has drawn growing research interest. However, it is still a challenging task due to the imbalance between normal and abnormal descriptions and the multi-sentence and multi-topic nature of radiology reports. These features result in significant challenges to generating accurate descriptions for medical images, especially the important abnormal findings. Previous methods to tackle these problems rely heavily on extra manual annotations, which are expensive to acquire. We propose a multi-grained report generation framework incorporating sentence-level image-sentence contrastive learning, which does not require any extra labeling but effectively learns knowledge from the image-report pairs. We first introduce contrastive learning as an auxiliary task for image feature learning. Different from previous contrastive methods, we exploit the multi-topic nature of imaging reports and perform fine-grained contrastive learning by extracting sentence topics and contents and contrasting between sentence contents and refined image contents guided by sentence topics. This forces the model to learn distinct abnormal image features for each specific topic. During generation, we use two decoders to first generate coarse sentence topics and then the fine-grained text of each sentence. We directly supervise the intermediate topics using sentence topics learned by our contrastive objective. This strengthens the generation constraint and enables independent fine-tuning of the decoders using reinforcement learning, which further boosts model performance. Experiments on two large-scale datasets MIMIC-CXR and IU-Xray demonstrate that our approach outperforms existing state-of-the-art methods, evaluated by both language generation metrics and clinical accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助jitianxing采纳,获得10
2秒前
英俊的铭应助秋分采纳,获得10
10秒前
加减乘除完成签到,获得积分10
10秒前
xmf完成签到,获得积分10
11秒前
Sunny完成签到 ,获得积分10
13秒前
dovejingling完成签到,获得积分10
15秒前
18秒前
额123没名完成签到 ,获得积分10
21秒前
晓书完成签到 ,获得积分10
26秒前
31秒前
坤坤蹦蹦跳跳完成签到,获得积分10
31秒前
35秒前
eye应助li采纳,获得10
57秒前
在路上完成签到,获得积分20
59秒前
1分钟前
健康的大门完成签到,获得积分10
1分钟前
田様应助cat采纳,获得50
1分钟前
在路上发布了新的文献求助30
1分钟前
段菲鹰完成签到,获得积分10
1分钟前
jitianxing完成签到,获得积分20
1分钟前
是啊今夕空闲关注了科研通微信公众号
1分钟前
传奇3应助Djnsbj采纳,获得10
1分钟前
1分钟前
hh完成签到,获得积分10
1分钟前
1分钟前
123456789完成签到,获得积分10
1分钟前
壮观的谷冬完成签到 ,获得积分0
1分钟前
marcelo完成签到,获得积分10
1分钟前
Djnsbj发布了新的文献求助10
1分钟前
Owen应助ying采纳,获得10
1分钟前
離原完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
Djnsbj完成签到,获得积分20
2分钟前
2分钟前
秋分发布了新的文献求助10
2分钟前
荷兰香猪完成签到,获得积分10
2分钟前
早起先喝一碗粥完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965582
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245330
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176