已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TDASD: Generating Medically Significant Fine-Grained Lung Adenocarcinoma Nodule CT Images Based on Stable Diffusion Models with Limited Sample Size

计算机科学 结核(地质) 样品(材料) 肺孤立结节 人工智能 腺癌 放射科 模式识别(心理学) 医学 计算机断层摄影术 癌症 古生物学 化学 色谱法 内科学 生物
作者
Yidan Xu,Jiaqing Liang,Yaoyao Zhuo,Lei Liu,Yanghua Xiao,Lingxiao Zhou
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:248: 108103-108103
标识
DOI:10.1016/j.cmpb.2024.108103
摘要

Spread through air spaces (STAS) is an emerging lung cancer infiltration pattern. Predicting its spread through CT scans is crucial. However, limited STAS data makes this prediction task highly challenging. Stable diffusion is capable of generating more diverse and higher-quality images compared to traditional GAN models, surpassing the dominating GAN family models in image synthesis over the past few years. To alleviate the issue of limited STAS data, we propose a method TDASD based on stable diffusion, which is able to generate high-resolution CT images of pulmonary nodules corresponding to specific nodular signs according to the medical professionals.First, we apply the stable diffusion method for fine-tuning training on publicly available lung datasets. Subsequently, we extract nodules from our hospital's lung adenocarcinoma data and apply slight rotations to the original nodule CT slices within a reasonable range before undergoing another round of fine-tuning through stable diffusion. Finally, employing DDIM and Ksample sampling methods, we generate lung adenocarcinoma nodule CT images with signs based on prompts provided by doctors. The method we propose not only safeguards patient privacy but also enhances the diversity of medical images under limited data conditions. Furthermore, our approach to generating medical images incorporates medical knowledge, resulting in images that exhibit pertinent medical features, thus holding significant value in tumor discrimination diagnostics.Our TDASD method has the capability to generate medically meaningful images by optimizing input prompts based on medical descriptions provided by experts. The images generated by our method can improve the model's classification accuracy. Furthermore, Utilizing solely the data generated by our method for model training, the test results on the original real dataset reveal an accuracy rate that closely aligns with the testing accuracy achieved through training on real data.The method we propose not only safeguards patient privacy but also enhances the diversity of medical images under limited data conditions. Furthermore, our approach to generating medical images incorporates medical knowledge, resulting in images that exhibit pertinent medical features, thus holding significant value in tumor discrimination diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Neon完成签到,获得积分10
1秒前
遇more完成签到 ,获得积分10
3秒前
lyon完成签到 ,获得积分10
6秒前
语嘘嘘发布了新的文献求助10
7秒前
16秒前
小肉球完成签到 ,获得积分10
16秒前
xiaoran发布了新的文献求助10
18秒前
jimmy完成签到,获得积分10
19秒前
任ren完成签到 ,获得积分10
19秒前
20秒前
26秒前
英姑应助神无采纳,获得10
28秒前
顾矜应助超级的代柔采纳,获得10
32秒前
小仙虎殿下完成签到 ,获得积分10
33秒前
调皮千兰发布了新的文献求助10
33秒前
可爱的函函应助酚酞v采纳,获得10
38秒前
赘婿应助牛犊采纳,获得10
40秒前
Wednesday Chong完成签到 ,获得积分10
43秒前
bkagyin应助thousandlong采纳,获得10
43秒前
44秒前
45秒前
45秒前
清爽的天晴完成签到,获得积分10
48秒前
灰灰完成签到 ,获得积分10
48秒前
稳重母鸡完成签到 ,获得积分10
49秒前
超级的代柔完成签到,获得积分10
50秒前
50秒前
牛犊发布了新的文献求助10
51秒前
52秒前
kubi发布了新的文献求助10
53秒前
54秒前
thousandlong发布了新的文献求助10
58秒前
xiaoran发布了新的文献求助10
1分钟前
1分钟前
WerWu完成签到,获得积分10
1分钟前
在水一方应助bosslin采纳,获得10
1分钟前
神无发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125979
求助须知:如何正确求助?哪些是违规求助? 2776237
关于积分的说明 7729511
捐赠科研通 2431621
什么是DOI,文献DOI怎么找? 1292180
科研通“疑难数据库(出版商)”最低求助积分说明 622582
版权声明 600392