TDASD: Generating Medically Significant Fine-Grained Lung Adenocarcinoma Nodule CT Images Based on Stable Diffusion Models with Limited Sample Size

计算机科学 结核(地质) 样品(材料) 肺孤立结节 人工智能 腺癌 放射科 模式识别(心理学) 医学 计算机断层摄影术 癌症 古生物学 化学 色谱法 内科学 生物
作者
Yidan Xu,Jiaqing Liang,Yaoyao Zhuo,Lei Liu,Yanghua Xiao,Lingxiao Zhou
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:248: 108103-108103
标识
DOI:10.1016/j.cmpb.2024.108103
摘要

Spread through air spaces (STAS) is an emerging lung cancer infiltration pattern. Predicting its spread through CT scans is crucial. However, limited STAS data makes this prediction task highly challenging. Stable diffusion is capable of generating more diverse and higher-quality images compared to traditional GAN models, surpassing the dominating GAN family models in image synthesis over the past few years. To alleviate the issue of limited STAS data, we propose a method TDASD based on stable diffusion, which is able to generate high-resolution CT images of pulmonary nodules corresponding to specific nodular signs according to the medical professionals.First, we apply the stable diffusion method for fine-tuning training on publicly available lung datasets. Subsequently, we extract nodules from our hospital's lung adenocarcinoma data and apply slight rotations to the original nodule CT slices within a reasonable range before undergoing another round of fine-tuning through stable diffusion. Finally, employing DDIM and Ksample sampling methods, we generate lung adenocarcinoma nodule CT images with signs based on prompts provided by doctors. The method we propose not only safeguards patient privacy but also enhances the diversity of medical images under limited data conditions. Furthermore, our approach to generating medical images incorporates medical knowledge, resulting in images that exhibit pertinent medical features, thus holding significant value in tumor discrimination diagnostics.Our TDASD method has the capability to generate medically meaningful images by optimizing input prompts based on medical descriptions provided by experts. The images generated by our method can improve the model's classification accuracy. Furthermore, Utilizing solely the data generated by our method for model training, the test results on the original real dataset reveal an accuracy rate that closely aligns with the testing accuracy achieved through training on real data.The method we propose not only safeguards patient privacy but also enhances the diversity of medical images under limited data conditions. Furthermore, our approach to generating medical images incorporates medical knowledge, resulting in images that exhibit pertinent medical features, thus holding significant value in tumor discrimination diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海之恋心完成签到 ,获得积分10
2秒前
科研通AI6应助背后的雪巧采纳,获得10
6秒前
量子星尘发布了新的文献求助10
9秒前
李健的小迷弟应助thchiang采纳,获得10
10秒前
欢呼的雨琴完成签到 ,获得积分10
21秒前
SJW--666完成签到,获得积分0
21秒前
木木完成签到,获得积分10
24秒前
28秒前
thchiang发布了新的文献求助10
32秒前
迅速千愁完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
Nana完成签到 ,获得积分10
38秒前
genius完成签到 ,获得积分10
47秒前
47秒前
thchiang完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
54秒前
Aixia完成签到 ,获得积分10
55秒前
1分钟前
小叶子完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
安详映阳完成签到 ,获得积分10
1分钟前
张昌炜完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
饱满语风完成签到 ,获得积分10
1分钟前
背后的雪巧完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
long0809完成签到,获得积分10
1分钟前
干净思远完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
luobote完成签到 ,获得积分10
2分钟前
alex12259完成签到 ,获得积分10
2分钟前
Antibody完成签到 ,获得积分10
2分钟前
明朗完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418544
求助须知:如何正确求助?哪些是违规求助? 4534237
关于积分的说明 14143298
捐赠科研通 4450452
什么是DOI,文献DOI怎么找? 2441265
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410399