清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TDASD: Generating Medically Significant Fine-Grained Lung Adenocarcinoma Nodule CT Images Based on Stable Diffusion Models with Limited Sample Size

计算机科学 结核(地质) 样品(材料) 肺孤立结节 人工智能 腺癌 放射科 模式识别(心理学) 医学 计算机断层摄影术 癌症 古生物学 化学 色谱法 内科学 生物
作者
Yidan Xu,Jiaqing Liang,Yaoyao Zhuo,Lei Liu,Yanghua Xiao,Lingxiao Zhou
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:248: 108103-108103
标识
DOI:10.1016/j.cmpb.2024.108103
摘要

Spread through air spaces (STAS) is an emerging lung cancer infiltration pattern. Predicting its spread through CT scans is crucial. However, limited STAS data makes this prediction task highly challenging. Stable diffusion is capable of generating more diverse and higher-quality images compared to traditional GAN models, surpassing the dominating GAN family models in image synthesis over the past few years. To alleviate the issue of limited STAS data, we propose a method TDASD based on stable diffusion, which is able to generate high-resolution CT images of pulmonary nodules corresponding to specific nodular signs according to the medical professionals.First, we apply the stable diffusion method for fine-tuning training on publicly available lung datasets. Subsequently, we extract nodules from our hospital's lung adenocarcinoma data and apply slight rotations to the original nodule CT slices within a reasonable range before undergoing another round of fine-tuning through stable diffusion. Finally, employing DDIM and Ksample sampling methods, we generate lung adenocarcinoma nodule CT images with signs based on prompts provided by doctors. The method we propose not only safeguards patient privacy but also enhances the diversity of medical images under limited data conditions. Furthermore, our approach to generating medical images incorporates medical knowledge, resulting in images that exhibit pertinent medical features, thus holding significant value in tumor discrimination diagnostics.Our TDASD method has the capability to generate medically meaningful images by optimizing input prompts based on medical descriptions provided by experts. The images generated by our method can improve the model's classification accuracy. Furthermore, Utilizing solely the data generated by our method for model training, the test results on the original real dataset reveal an accuracy rate that closely aligns with the testing accuracy achieved through training on real data.The method we propose not only safeguards patient privacy but also enhances the diversity of medical images under limited data conditions. Furthermore, our approach to generating medical images incorporates medical knowledge, resulting in images that exhibit pertinent medical features, thus holding significant value in tumor discrimination diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的傲珊完成签到,获得积分10
5秒前
善学以致用应助bobo采纳,获得10
20秒前
拼搏的羊青完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
32秒前
冷静的小虾米完成签到 ,获得积分10
41秒前
花花糖果完成签到 ,获得积分10
44秒前
winjay完成签到 ,获得积分10
46秒前
mm完成签到 ,获得积分10
50秒前
小赵完成签到,获得积分10
53秒前
相爱就永远在一起完成签到,获得积分10
54秒前
shadow完成签到,获得积分10
58秒前
2520完成签到 ,获得积分10
1分钟前
迅速的幻雪完成签到 ,获得积分10
1分钟前
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
猫的毛完成签到 ,获得积分10
1分钟前
小强完成签到 ,获得积分10
1分钟前
蒲蒲完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
wodetaiyangLLL完成签到 ,获得积分10
1分钟前
楚襄谷完成签到 ,获得积分10
1分钟前
温柔觅松完成签到 ,获得积分10
1分钟前
Brooks完成签到,获得积分10
1分钟前
李某发布了新的文献求助10
1分钟前
孟寐以求完成签到 ,获得积分10
2分钟前
请和我吃饭完成签到,获得积分10
2分钟前
Arctic完成签到 ,获得积分10
2分钟前
小白白完成签到 ,获得积分10
2分钟前
Regina完成签到 ,获得积分10
2分钟前
蓝色白羊完成签到 ,获得积分10
2分钟前
Glory完成签到 ,获得积分10
2分钟前
醉熏的千柳完成签到 ,获得积分10
2分钟前
唐唐完成签到,获得积分10
2分钟前
chen完成签到,获得积分10
2分钟前
YWJ完成签到 ,获得积分10
3分钟前
猪猪hero应助chen采纳,获得10
3分钟前
czj完成签到 ,获得积分10
3分钟前
grace完成签到 ,获得积分10
3分钟前
陈小瑜完成签到,获得积分10
3分钟前
鸭鸭完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503115
关于积分的说明 11111359
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292